Extensions 1→N→G→Q→1 with N=C4 and Q=D46

Direct product G=N×Q with N=C4 and Q=D46
dρLabelID
C2×C4×D23184C2xC4xD23368,28

Semidirect products G=N:Q with N=C4 and Q=D46
extensionφ:Q→Aut NdρLabelID
C41D46 = D4×D23φ: D46/D23C2 ⊆ Aut C4924+C4:1D46368,31
C42D46 = C2×D92φ: D46/C46C2 ⊆ Aut C4184C4:2D46368,29

Non-split extensions G=N.Q with N=C4 and Q=D46
extensionφ:Q→Aut NdρLabelID
C4.1D46 = D4⋊D23φ: D46/D23C2 ⊆ Aut C41844+C4.1D46368,14
C4.2D46 = D4.D23φ: D46/D23C2 ⊆ Aut C41844-C4.2D46368,15
C4.3D46 = Q8⋊D23φ: D46/D23C2 ⊆ Aut C41844+C4.3D46368,16
C4.4D46 = C23⋊Q16φ: D46/D23C2 ⊆ Aut C43684-C4.4D46368,17
C4.5D46 = D42D23φ: D46/D23C2 ⊆ Aut C41844-C4.5D46368,32
C4.6D46 = Q8×D23φ: D46/D23C2 ⊆ Aut C41844-C4.6D46368,33
C4.7D46 = D92⋊C2φ: D46/D23C2 ⊆ Aut C41844+C4.7D46368,34
C4.8D46 = C184⋊C2φ: D46/C46C2 ⊆ Aut C41842C4.8D46368,5
C4.9D46 = D184φ: D46/C46C2 ⊆ Aut C41842+C4.9D46368,6
C4.10D46 = Dic92φ: D46/C46C2 ⊆ Aut C43682-C4.10D46368,7
C4.11D46 = C2×Dic46φ: D46/C46C2 ⊆ Aut C4368C4.11D46368,27
C4.12D46 = C8×D23central extension (φ=1)1842C4.12D46368,3
C4.13D46 = C8⋊D23central extension (φ=1)1842C4.13D46368,4
C4.14D46 = C2×C23⋊C8central extension (φ=1)368C4.14D46368,8
C4.15D46 = C92.C4central extension (φ=1)1842C4.15D46368,9
C4.16D46 = D925C2central extension (φ=1)1842C4.16D46368,30

׿
×
𝔽