Extensions 1→N→G→Q→1 with N=C4×D23 and Q=C2

Direct product G=N×Q with N=C4×D23 and Q=C2
dρLabelID
C2×C4×D23184C2xC4xD23368,28

Semidirect products G=N:Q with N=C4×D23 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D23)⋊1C2 = D4×D23φ: C2/C1C2 ⊆ Out C4×D23924+(C4xD23):1C2368,31
(C4×D23)⋊2C2 = D42D23φ: C2/C1C2 ⊆ Out C4×D231844-(C4xD23):2C2368,32
(C4×D23)⋊3C2 = D92⋊C2φ: C2/C1C2 ⊆ Out C4×D231844+(C4xD23):3C2368,34
(C4×D23)⋊4C2 = D925C2φ: C2/C1C2 ⊆ Out C4×D231842(C4xD23):4C2368,30

Non-split extensions G=N.Q with N=C4×D23 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D23).1C2 = Q8×D23φ: C2/C1C2 ⊆ Out C4×D231844-(C4xD23).1C2368,33
(C4×D23).2C2 = C8⋊D23φ: C2/C1C2 ⊆ Out C4×D231842(C4xD23).2C2368,4
(C4×D23).3C2 = C8×D23φ: trivial image1842(C4xD23).3C2368,3

׿
×
𝔽