extension | φ:Q→Aut N | d | ρ | Label | ID |
C10.1D18 = C45⋊Q8 | φ: D18/D9 → C2 ⊆ Aut C10 | 360 | 4- | C10.1D18 | 360,7 |
C10.2D18 = D9×Dic5 | φ: D18/D9 → C2 ⊆ Aut C10 | 180 | 4- | C10.2D18 | 360,8 |
C10.3D18 = D90.C2 | φ: D18/D9 → C2 ⊆ Aut C10 | 180 | 4+ | C10.3D18 | 360,9 |
C10.4D18 = C5⋊D36 | φ: D18/D9 → C2 ⊆ Aut C10 | 180 | 4+ | C10.4D18 | 360,10 |
C10.5D18 = D5×Dic9 | φ: D18/D9 → C2 ⊆ Aut C10 | 180 | 4- | C10.5D18 | 360,11 |
C10.6D18 = C45⋊D4 | φ: D18/D9 → C2 ⊆ Aut C10 | 180 | 4- | C10.6D18 | 360,12 |
C10.7D18 = C9⋊D20 | φ: D18/D9 → C2 ⊆ Aut C10 | 180 | 4+ | C10.7D18 | 360,13 |
C10.8D18 = Dic90 | φ: D18/C18 → C2 ⊆ Aut C10 | 360 | 2- | C10.8D18 | 360,25 |
C10.9D18 = C4×D45 | φ: D18/C18 → C2 ⊆ Aut C10 | 180 | 2 | C10.9D18 | 360,26 |
C10.10D18 = D180 | φ: D18/C18 → C2 ⊆ Aut C10 | 180 | 2+ | C10.10D18 | 360,27 |
C10.11D18 = C2×Dic45 | φ: D18/C18 → C2 ⊆ Aut C10 | 360 | | C10.11D18 | 360,28 |
C10.12D18 = C45⋊7D4 | φ: D18/C18 → C2 ⊆ Aut C10 | 180 | 2 | C10.12D18 | 360,29 |
C10.13D18 = C5×Dic18 | central extension (φ=1) | 360 | 2 | C10.13D18 | 360,20 |
C10.14D18 = D9×C20 | central extension (φ=1) | 180 | 2 | C10.14D18 | 360,21 |
C10.15D18 = C5×D36 | central extension (φ=1) | 180 | 2 | C10.15D18 | 360,22 |
C10.16D18 = C10×Dic9 | central extension (φ=1) | 360 | | C10.16D18 | 360,23 |
C10.17D18 = C5×C9⋊D4 | central extension (φ=1) | 180 | 2 | C10.17D18 | 360,24 |