Extensions 1→N→G→Q→1 with N=C10 and Q=D18

Direct product G=N×Q with N=C10 and Q=D18
dρLabelID
D9×C2×C10180D9xC2xC10360,48

Semidirect products G=N:Q with N=C10 and Q=D18
extensionφ:Q→Aut NdρLabelID
C101D18 = C2×D5×D9φ: D18/D9C2 ⊆ Aut C10904+C10:1D18360,45
C102D18 = C22×D45φ: D18/C18C2 ⊆ Aut C10180C10:2D18360,49

Non-split extensions G=N.Q with N=C10 and Q=D18
extensionφ:Q→Aut NdρLabelID
C10.1D18 = C45⋊Q8φ: D18/D9C2 ⊆ Aut C103604-C10.1D18360,7
C10.2D18 = D9×Dic5φ: D18/D9C2 ⊆ Aut C101804-C10.2D18360,8
C10.3D18 = D90.C2φ: D18/D9C2 ⊆ Aut C101804+C10.3D18360,9
C10.4D18 = C5⋊D36φ: D18/D9C2 ⊆ Aut C101804+C10.4D18360,10
C10.5D18 = D5×Dic9φ: D18/D9C2 ⊆ Aut C101804-C10.5D18360,11
C10.6D18 = C45⋊D4φ: D18/D9C2 ⊆ Aut C101804-C10.6D18360,12
C10.7D18 = C9⋊D20φ: D18/D9C2 ⊆ Aut C101804+C10.7D18360,13
C10.8D18 = Dic90φ: D18/C18C2 ⊆ Aut C103602-C10.8D18360,25
C10.9D18 = C4×D45φ: D18/C18C2 ⊆ Aut C101802C10.9D18360,26
C10.10D18 = D180φ: D18/C18C2 ⊆ Aut C101802+C10.10D18360,27
C10.11D18 = C2×Dic45φ: D18/C18C2 ⊆ Aut C10360C10.11D18360,28
C10.12D18 = C457D4φ: D18/C18C2 ⊆ Aut C101802C10.12D18360,29
C10.13D18 = C5×Dic18central extension (φ=1)3602C10.13D18360,20
C10.14D18 = D9×C20central extension (φ=1)1802C10.14D18360,21
C10.15D18 = C5×D36central extension (φ=1)1802C10.15D18360,22
C10.16D18 = C10×Dic9central extension (φ=1)360C10.16D18360,23
C10.17D18 = C5×C9⋊D4central extension (φ=1)1802C10.17D18360,24

׿
×
𝔽