metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: D180, C4⋊D45, C5⋊1D36, C9⋊1D20, C45⋊4D4, C3.D60, C36⋊1D5, C20⋊1D9, C180⋊1C2, D90⋊1C2, C60.2S3, C2.4D90, C6.10D30, C30.42D6, C15.2D12, C12.2D15, C10.10D18, C18.10D10, C90.10C22, sometimes denoted D360 or Dih180 or Dih360, SmallGroup(360,27)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D180
G = < a,b | a180=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)
(1 180)(2 179)(3 178)(4 177)(5 176)(6 175)(7 174)(8 173)(9 172)(10 171)(11 170)(12 169)(13 168)(14 167)(15 166)(16 165)(17 164)(18 163)(19 162)(20 161)(21 160)(22 159)(23 158)(24 157)(25 156)(26 155)(27 154)(28 153)(29 152)(30 151)(31 150)(32 149)(33 148)(34 147)(35 146)(36 145)(37 144)(38 143)(39 142)(40 141)(41 140)(42 139)(43 138)(44 137)(45 136)(46 135)(47 134)(48 133)(49 132)(50 131)(51 130)(52 129)(53 128)(54 127)(55 126)(56 125)(57 124)(58 123)(59 122)(60 121)(61 120)(62 119)(63 118)(64 117)(65 116)(66 115)(67 114)(68 113)(69 112)(70 111)(71 110)(72 109)(73 108)(74 107)(75 106)(76 105)(77 104)(78 103)(79 102)(80 101)(81 100)(82 99)(83 98)(84 97)(85 96)(86 95)(87 94)(88 93)(89 92)(90 91)
G:=sub<Sym(180)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180), (1,180)(2,179)(3,178)(4,177)(5,176)(6,175)(7,174)(8,173)(9,172)(10,171)(11,170)(12,169)(13,168)(14,167)(15,166)(16,165)(17,164)(18,163)(19,162)(20,161)(21,160)(22,159)(23,158)(24,157)(25,156)(26,155)(27,154)(28,153)(29,152)(30,151)(31,150)(32,149)(33,148)(34,147)(35,146)(36,145)(37,144)(38,143)(39,142)(40,141)(41,140)(42,139)(43,138)(44,137)(45,136)(46,135)(47,134)(48,133)(49,132)(50,131)(51,130)(52,129)(53,128)(54,127)(55,126)(56,125)(57,124)(58,123)(59,122)(60,121)(61,120)(62,119)(63,118)(64,117)(65,116)(66,115)(67,114)(68,113)(69,112)(70,111)(71,110)(72,109)(73,108)(74,107)(75,106)(76,105)(77,104)(78,103)(79,102)(80,101)(81,100)(82,99)(83,98)(84,97)(85,96)(86,95)(87,94)(88,93)(89,92)(90,91)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180), (1,180)(2,179)(3,178)(4,177)(5,176)(6,175)(7,174)(8,173)(9,172)(10,171)(11,170)(12,169)(13,168)(14,167)(15,166)(16,165)(17,164)(18,163)(19,162)(20,161)(21,160)(22,159)(23,158)(24,157)(25,156)(26,155)(27,154)(28,153)(29,152)(30,151)(31,150)(32,149)(33,148)(34,147)(35,146)(36,145)(37,144)(38,143)(39,142)(40,141)(41,140)(42,139)(43,138)(44,137)(45,136)(46,135)(47,134)(48,133)(49,132)(50,131)(51,130)(52,129)(53,128)(54,127)(55,126)(56,125)(57,124)(58,123)(59,122)(60,121)(61,120)(62,119)(63,118)(64,117)(65,116)(66,115)(67,114)(68,113)(69,112)(70,111)(71,110)(72,109)(73,108)(74,107)(75,106)(76,105)(77,104)(78,103)(79,102)(80,101)(81,100)(82,99)(83,98)(84,97)(85,96)(86,95)(87,94)(88,93)(89,92)(90,91) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)], [(1,180),(2,179),(3,178),(4,177),(5,176),(6,175),(7,174),(8,173),(9,172),(10,171),(11,170),(12,169),(13,168),(14,167),(15,166),(16,165),(17,164),(18,163),(19,162),(20,161),(21,160),(22,159),(23,158),(24,157),(25,156),(26,155),(27,154),(28,153),(29,152),(30,151),(31,150),(32,149),(33,148),(34,147),(35,146),(36,145),(37,144),(38,143),(39,142),(40,141),(41,140),(42,139),(43,138),(44,137),(45,136),(46,135),(47,134),(48,133),(49,132),(50,131),(51,130),(52,129),(53,128),(54,127),(55,126),(56,125),(57,124),(58,123),(59,122),(60,121),(61,120),(62,119),(63,118),(64,117),(65,116),(66,115),(67,114),(68,113),(69,112),(70,111),(71,110),(72,109),(73,108),(74,107),(75,106),(76,105),(77,104),(78,103),(79,102),(80,101),(81,100),(82,99),(83,98),(84,97),(85,96),(86,95),(87,94),(88,93),(89,92),(90,91)]])
93 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4 | 5A | 5B | 6 | 9A | 9B | 9C | 10A | 10B | 12A | 12B | 15A | 15B | 15C | 15D | 18A | 18B | 18C | 20A | 20B | 20C | 20D | 30A | 30B | 30C | 30D | 36A | ··· | 36F | 45A | ··· | 45L | 60A | ··· | 60H | 90A | ··· | 90L | 180A | ··· | 180X |
order | 1 | 2 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 9 | 9 | 9 | 10 | 10 | 12 | 12 | 15 | 15 | 15 | 15 | 18 | 18 | 18 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 36 | ··· | 36 | 45 | ··· | 45 | 60 | ··· | 60 | 90 | ··· | 90 | 180 | ··· | 180 |
size | 1 | 1 | 90 | 90 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
93 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | S3 | D4 | D5 | D6 | D9 | D10 | D12 | D15 | D18 | D20 | D30 | D36 | D45 | D60 | D90 | D180 |
kernel | D180 | C180 | D90 | C60 | C45 | C36 | C30 | C20 | C18 | C15 | C12 | C10 | C9 | C6 | C5 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 3 | 2 | 2 | 4 | 3 | 4 | 4 | 6 | 12 | 8 | 12 | 24 |
Matrix representation of D180 ►in GL2(𝔽181) generated by
60 | 34 |
147 | 26 |
123 | 37 |
95 | 58 |
G:=sub<GL(2,GF(181))| [60,147,34,26],[123,95,37,58] >;
D180 in GAP, Magma, Sage, TeX
D_{180}
% in TeX
G:=Group("D180");
// GroupNames label
G:=SmallGroup(360,27);
// by ID
G=gap.SmallGroup(360,27);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-5,-3,73,31,3267,741,2884,8645]);
// Polycyclic
G:=Group<a,b|a^180=b^2=1,b*a*b=a^-1>;
// generators/relations
Export