Copied to
clipboard

G = C2xD5xD9order 360 = 23·32·5

Direct product of C2, D5 and D9

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2xD5xD9, C45:C23, C90:C22, D90:5C2, C10:1D18, C18:1D10, D45:C22, C30.8D6, (C5xD9):C22, (C9xD5):C22, C9:1(C22xD5), C5:1(C22xD9), (D5xC18):3C2, (C10xD9):3C2, (C6xD5).4S3, (C3xD5).6D6, C6.15(S3xD5), C15.(C22xS3), C3.(C2xS3xD5), SmallGroup(360,45)

Series: Derived Chief Lower central Upper central

C1C45 — C2xD5xD9
C1C3C15C45C9xD5D5xD9 — C2xD5xD9
C45 — C2xD5xD9
C1C2

Generators and relations for C2xD5xD9
 G = < a,b,c,d,e | a2=b5=c2=d9=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 768 in 96 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C3, C22, C5, S3, C6, C6, C23, C9, D5, D5, C10, C10, D6, C2xC6, C15, D9, D9, C18, C18, D10, D10, C2xC10, C22xS3, C5xS3, C3xD5, D15, C30, D18, D18, C2xC18, C22xD5, C45, S3xD5, C6xD5, S3xC10, D30, C22xD9, C5xD9, C9xD5, D45, C90, C2xS3xD5, D5xD9, D5xC18, C10xD9, D90, C2xD5xD9
Quotients: C1, C2, C22, S3, C23, D5, D6, D9, D10, C22xS3, D18, C22xD5, S3xD5, C22xD9, C2xS3xD5, D5xD9, C2xD5xD9

Smallest permutation representation of C2xD5xD9
On 90 points
Generators in S90
(1 79)(2 80)(3 81)(4 73)(5 74)(6 75)(7 76)(8 77)(9 78)(10 53)(11 54)(12 46)(13 47)(14 48)(15 49)(16 50)(17 51)(18 52)(19 60)(20 61)(21 62)(22 63)(23 55)(24 56)(25 57)(26 58)(27 59)(28 71)(29 72)(30 64)(31 65)(32 66)(33 67)(34 68)(35 69)(36 70)(37 82)(38 83)(39 84)(40 85)(41 86)(42 87)(43 88)(44 89)(45 90)
(1 71 40 22 47)(2 72 41 23 48)(3 64 42 24 49)(4 65 43 25 50)(5 66 44 26 51)(6 67 45 27 52)(7 68 37 19 53)(8 69 38 20 54)(9 70 39 21 46)(10 76 34 82 60)(11 77 35 83 61)(12 78 36 84 62)(13 79 28 85 63)(14 80 29 86 55)(15 81 30 87 56)(16 73 31 88 57)(17 74 32 89 58)(18 75 33 90 59)
(1 47)(2 48)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 46)(10 76)(11 77)(12 78)(13 79)(14 80)(15 81)(16 73)(17 74)(18 75)(19 68)(20 69)(21 70)(22 71)(23 72)(24 64)(25 65)(26 66)(27 67)(28 63)(29 55)(30 56)(31 57)(32 58)(33 59)(34 60)(35 61)(36 62)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)
(1 78)(2 77)(3 76)(4 75)(5 74)(6 73)(7 81)(8 80)(9 79)(10 49)(11 48)(12 47)(13 46)(14 54)(15 53)(16 52)(17 51)(18 50)(19 56)(20 55)(21 63)(22 62)(23 61)(24 60)(25 59)(26 58)(27 57)(28 70)(29 69)(30 68)(31 67)(32 66)(33 65)(34 64)(35 72)(36 71)(37 87)(38 86)(39 85)(40 84)(41 83)(42 82)(43 90)(44 89)(45 88)

G:=sub<Sym(90)| (1,79)(2,80)(3,81)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,53)(11,54)(12,46)(13,47)(14,48)(15,49)(16,50)(17,51)(18,52)(19,60)(20,61)(21,62)(22,63)(23,55)(24,56)(25,57)(26,58)(27,59)(28,71)(29,72)(30,64)(31,65)(32,66)(33,67)(34,68)(35,69)(36,70)(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90), (1,71,40,22,47)(2,72,41,23,48)(3,64,42,24,49)(4,65,43,25,50)(5,66,44,26,51)(6,67,45,27,52)(7,68,37,19,53)(8,69,38,20,54)(9,70,39,21,46)(10,76,34,82,60)(11,77,35,83,61)(12,78,36,84,62)(13,79,28,85,63)(14,80,29,86,55)(15,81,30,87,56)(16,73,31,88,57)(17,74,32,89,58)(18,75,33,90,59), (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,46)(10,76)(11,77)(12,78)(13,79)(14,80)(15,81)(16,73)(17,74)(18,75)(19,68)(20,69)(21,70)(22,71)(23,72)(24,64)(25,65)(26,66)(27,67)(28,63)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,61)(36,62), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90), (1,78)(2,77)(3,76)(4,75)(5,74)(6,73)(7,81)(8,80)(9,79)(10,49)(11,48)(12,47)(13,46)(14,54)(15,53)(16,52)(17,51)(18,50)(19,56)(20,55)(21,63)(22,62)(23,61)(24,60)(25,59)(26,58)(27,57)(28,70)(29,69)(30,68)(31,67)(32,66)(33,65)(34,64)(35,72)(36,71)(37,87)(38,86)(39,85)(40,84)(41,83)(42,82)(43,90)(44,89)(45,88)>;

G:=Group( (1,79)(2,80)(3,81)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,53)(11,54)(12,46)(13,47)(14,48)(15,49)(16,50)(17,51)(18,52)(19,60)(20,61)(21,62)(22,63)(23,55)(24,56)(25,57)(26,58)(27,59)(28,71)(29,72)(30,64)(31,65)(32,66)(33,67)(34,68)(35,69)(36,70)(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90), (1,71,40,22,47)(2,72,41,23,48)(3,64,42,24,49)(4,65,43,25,50)(5,66,44,26,51)(6,67,45,27,52)(7,68,37,19,53)(8,69,38,20,54)(9,70,39,21,46)(10,76,34,82,60)(11,77,35,83,61)(12,78,36,84,62)(13,79,28,85,63)(14,80,29,86,55)(15,81,30,87,56)(16,73,31,88,57)(17,74,32,89,58)(18,75,33,90,59), (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,46)(10,76)(11,77)(12,78)(13,79)(14,80)(15,81)(16,73)(17,74)(18,75)(19,68)(20,69)(21,70)(22,71)(23,72)(24,64)(25,65)(26,66)(27,67)(28,63)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,61)(36,62), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90), (1,78)(2,77)(3,76)(4,75)(5,74)(6,73)(7,81)(8,80)(9,79)(10,49)(11,48)(12,47)(13,46)(14,54)(15,53)(16,52)(17,51)(18,50)(19,56)(20,55)(21,63)(22,62)(23,61)(24,60)(25,59)(26,58)(27,57)(28,70)(29,69)(30,68)(31,67)(32,66)(33,65)(34,64)(35,72)(36,71)(37,87)(38,86)(39,85)(40,84)(41,83)(42,82)(43,90)(44,89)(45,88) );

G=PermutationGroup([[(1,79),(2,80),(3,81),(4,73),(5,74),(6,75),(7,76),(8,77),(9,78),(10,53),(11,54),(12,46),(13,47),(14,48),(15,49),(16,50),(17,51),(18,52),(19,60),(20,61),(21,62),(22,63),(23,55),(24,56),(25,57),(26,58),(27,59),(28,71),(29,72),(30,64),(31,65),(32,66),(33,67),(34,68),(35,69),(36,70),(37,82),(38,83),(39,84),(40,85),(41,86),(42,87),(43,88),(44,89),(45,90)], [(1,71,40,22,47),(2,72,41,23,48),(3,64,42,24,49),(4,65,43,25,50),(5,66,44,26,51),(6,67,45,27,52),(7,68,37,19,53),(8,69,38,20,54),(9,70,39,21,46),(10,76,34,82,60),(11,77,35,83,61),(12,78,36,84,62),(13,79,28,85,63),(14,80,29,86,55),(15,81,30,87,56),(16,73,31,88,57),(17,74,32,89,58),(18,75,33,90,59)], [(1,47),(2,48),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,46),(10,76),(11,77),(12,78),(13,79),(14,80),(15,81),(16,73),(17,74),(18,75),(19,68),(20,69),(21,70),(22,71),(23,72),(24,64),(25,65),(26,66),(27,67),(28,63),(29,55),(30,56),(31,57),(32,58),(33,59),(34,60),(35,61),(36,62)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90)], [(1,78),(2,77),(3,76),(4,75),(5,74),(6,73),(7,81),(8,80),(9,79),(10,49),(11,48),(12,47),(13,46),(14,54),(15,53),(16,52),(17,51),(18,50),(19,56),(20,55),(21,63),(22,62),(23,61),(24,60),(25,59),(26,58),(27,57),(28,70),(29,69),(30,68),(31,67),(32,66),(33,65),(34,64),(35,72),(36,71),(37,87),(38,86),(39,85),(40,84),(41,83),(42,82),(43,90),(44,89),(45,88)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 5A5B6A6B6C9A9B9C10A10B10C10D10E10F15A15B18A18B18C18D···18I30A30B45A···45F90A···90F
order12222222355666999101010101010151518181818···18303045···4590···90
size11559945452222101022222181818184422210···10444···44···4

48 irreducible representations

dim111112222222224444
type++++++++++++++++++
imageC1C2C2C2C2S3D5D6D6D9D10D10D18D18S3xD5C2xS3xD5D5xD9C2xD5xD9
kernelC2xD5xD9D5xD9D5xC18C10xD9D90C6xD5D18C3xD5C30D10D9C18D5C10C6C3C2C1
# reps141111221342632266

Matrix representation of C2xD5xD9 in GL6(F181)

100000
010000
00180000
00018000
000010
000001
,
010000
180130000
001000
000100
000010
000001
,
010000
100000
001000
000100
000010
000001
,
100000
010000
00122300
001265800
0000177131
000050127
,
100000
010000
001000
003918000
00004127
0000131177

G:=sub<GL(6,GF(181))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,180,0,0,0,0,0,0,180,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,180,0,0,0,0,1,13,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,122,126,0,0,0,0,3,58,0,0,0,0,0,0,177,50,0,0,0,0,131,127],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,39,0,0,0,0,0,180,0,0,0,0,0,0,4,131,0,0,0,0,127,177] >;

C2xD5xD9 in GAP, Magma, Sage, TeX

C_2\times D_5\times D_9
% in TeX

G:=Group("C2xD5xD9");
// GroupNames label

G:=SmallGroup(360,45);
// by ID

G=gap.SmallGroup(360,45);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-5,-3,1641,741,2884,4331]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^5=c^2=d^9=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<