Extensions 1→N→G→Q→1 with N=C3×Dic3 and Q=C10

Direct product G=N×Q with N=C3×Dic3 and Q=C10
dρLabelID
Dic3×C30120Dic3xC30360,98

Semidirect products G=N:Q with N=C3×Dic3 and Q=C10
extensionφ:Q→Out NdρLabelID
(C3×Dic3)⋊1C10 = C5×C3⋊D12φ: C10/C5C2 ⊆ Out C3×Dic3604(C3xDic3):1C10360,75
(C3×Dic3)⋊2C10 = C5×S3×Dic3φ: C10/C5C2 ⊆ Out C3×Dic31204(C3xDic3):2C10360,72
(C3×Dic3)⋊3C10 = C5×C6.D6φ: C10/C5C2 ⊆ Out C3×Dic3604(C3xDic3):3C10360,73
(C3×Dic3)⋊4C10 = C15×C3⋊D4φ: C10/C5C2 ⊆ Out C3×Dic3602(C3xDic3):4C10360,99
(C3×Dic3)⋊5C10 = S3×C60φ: trivial image1202(C3xDic3):5C10360,96

Non-split extensions G=N.Q with N=C3×Dic3 and Q=C10
extensionφ:Q→Out NdρLabelID
(C3×Dic3).1C10 = C5×C322Q8φ: C10/C5C2 ⊆ Out C3×Dic31204(C3xDic3).1C10360,76
(C3×Dic3).2C10 = C15×Dic6φ: C10/C5C2 ⊆ Out C3×Dic31202(C3xDic3).2C10360,95

׿
×
𝔽