extension | φ:Q→Aut N | d | ρ | Label | ID |
C15⋊(C2×Dic3) = S3×C3⋊F5 | φ: C2×Dic3/C3 → C2×C4 ⊆ Aut C15 | 30 | 8 | C15:(C2xDic3) | 360,128 |
C15⋊2(C2×Dic3) = C2×C32⋊3F5 | φ: C2×Dic3/C6 → C4 ⊆ Aut C15 | 90 | | C15:2(C2xDic3) | 360,147 |
C15⋊3(C2×Dic3) = C6×C3⋊F5 | φ: C2×Dic3/C6 → C4 ⊆ Aut C15 | 60 | 4 | C15:3(C2xDic3) | 360,146 |
C15⋊4(C2×Dic3) = D5×C3⋊Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C15 | 180 | | C15:4(C2xDic3) | 360,65 |
C15⋊5(C2×Dic3) = S3×Dic15 | φ: C2×Dic3/C6 → C22 ⊆ Aut C15 | 120 | 4- | C15:5(C2xDic3) | 360,78 |
C15⋊6(C2×Dic3) = D30.S3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C15 | 120 | 4 | C15:6(C2xDic3) | 360,84 |
C15⋊7(C2×Dic3) = Dic3×D15 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C15 | 120 | 4- | C15:7(C2xDic3) | 360,77 |
C15⋊8(C2×Dic3) = C3×D5×Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C15 | 60 | 4 | C15:8(C2xDic3) | 360,58 |
C15⋊9(C2×Dic3) = C5×S3×Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C15 | 120 | 4 | C15:9(C2xDic3) | 360,72 |
C15⋊10(C2×Dic3) = C2×C3⋊Dic15 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C15 | 360 | | C15:10(C2xDic3) | 360,113 |
C15⋊11(C2×Dic3) = C6×Dic15 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C15 | 120 | | C15:11(C2xDic3) | 360,103 |
C15⋊12(C2×Dic3) = C10×C3⋊Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C15 | 360 | | C15:12(C2xDic3) | 360,108 |