Extensions 1→N→G→Q→1 with N=C15 and Q=C2×Dic3

Direct product G=N×Q with N=C15 and Q=C2×Dic3
dρLabelID
Dic3×C30120Dic3xC30360,98

Semidirect products G=N:Q with N=C15 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C15⋊(C2×Dic3) = S3×C3⋊F5φ: C2×Dic3/C3C2×C4 ⊆ Aut C15308C15:(C2xDic3)360,128
C152(C2×Dic3) = C2×C323F5φ: C2×Dic3/C6C4 ⊆ Aut C1590C15:2(C2xDic3)360,147
C153(C2×Dic3) = C6×C3⋊F5φ: C2×Dic3/C6C4 ⊆ Aut C15604C15:3(C2xDic3)360,146
C154(C2×Dic3) = D5×C3⋊Dic3φ: C2×Dic3/C6C22 ⊆ Aut C15180C15:4(C2xDic3)360,65
C155(C2×Dic3) = S3×Dic15φ: C2×Dic3/C6C22 ⊆ Aut C151204-C15:5(C2xDic3)360,78
C156(C2×Dic3) = D30.S3φ: C2×Dic3/C6C22 ⊆ Aut C151204C15:6(C2xDic3)360,84
C157(C2×Dic3) = Dic3×D15φ: C2×Dic3/Dic3C2 ⊆ Aut C151204-C15:7(C2xDic3)360,77
C158(C2×Dic3) = C3×D5×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C15604C15:8(C2xDic3)360,58
C159(C2×Dic3) = C5×S3×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C151204C15:9(C2xDic3)360,72
C1510(C2×Dic3) = C2×C3⋊Dic15φ: C2×Dic3/C2×C6C2 ⊆ Aut C15360C15:10(C2xDic3)360,113
C1511(C2×Dic3) = C6×Dic15φ: C2×Dic3/C2×C6C2 ⊆ Aut C15120C15:11(C2xDic3)360,103
C1512(C2×Dic3) = C10×C3⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C15360C15:12(C2xDic3)360,108

Non-split extensions G=N.Q with N=C15 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C15.1(C2×Dic3) = C2×C9⋊F5φ: C2×Dic3/C6C4 ⊆ Aut C15904C15.1(C2xDic3)360,44
C15.2(C2×Dic3) = D5×Dic9φ: C2×Dic3/C6C22 ⊆ Aut C151804-C15.2(C2xDic3)360,11
C15.3(C2×Dic3) = C2×Dic45φ: C2×Dic3/C2×C6C2 ⊆ Aut C15360C15.3(C2xDic3)360,28
C15.4(C2×Dic3) = C10×Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C15360C15.4(C2xDic3)360,23

׿
×
𝔽