Copied to
clipboard

G = C2xC9:F5order 360 = 23·32·5

Direct product of C2 and C9:F5

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2xC9:F5, C18:F5, C90:1C4, D5:Dic9, D10.D9, C10:Dic9, D5.2D18, C30.2Dic3, C5:(C2xDic9), C9:2(C2xF5), C45:2(C2xC4), (C9xD5):2C4, C6.2(C3:F5), (C3xD5).7D6, (C6xD5).6S3, (D5xC18).2C2, (C3xD5).2Dic3, C15.1(C2xDic3), (C9xD5).2C22, C3.(C2xC3:F5), SmallGroup(360,44)

Series: Derived Chief Lower central Upper central

C1C45 — C2xC9:F5
C1C3C15C45C9xD5C9:F5 — C2xC9:F5
C45 — C2xC9:F5
C1C2

Generators and relations for C2xC9:F5
 G = < a,b,c,d | a2=b9=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >

Subgroups: 300 in 48 conjugacy classes, 24 normal (22 characteristic)
Quotients: C1, C2, C4, C22, S3, C2xC4, Dic3, D6, D9, F5, C2xDic3, Dic9, D18, C2xF5, C3:F5, C2xDic9, C2xC3:F5, C9:F5, C2xC9:F5
5C2
5C2
5C22
45C4
45C4
5C6
5C6
45C2xC4
5C2xC6
15Dic3
15Dic3
5C18
5C18
9F5
9F5
15C2xDic3
5C2xC18
5Dic9
5Dic9
9C2xF5
3C3:F5
3C3:F5
5C2xDic9
3C2xC3:F5

Smallest permutation representation of C2xC9:F5
On 90 points
Generators in S90
(1 55)(2 56)(3 57)(4 58)(5 59)(6 60)(7 61)(8 62)(9 63)(10 53)(11 54)(12 46)(13 47)(14 48)(15 49)(16 50)(17 51)(18 52)(19 78)(20 79)(21 80)(22 81)(23 73)(24 74)(25 75)(26 76)(27 77)(28 71)(29 72)(30 64)(31 65)(32 66)(33 67)(34 68)(35 69)(36 70)(37 82)(38 83)(39 84)(40 85)(41 86)(42 87)(43 88)(44 89)(45 90)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)
(1 54 41 22 70)(2 46 42 23 71)(3 47 43 24 72)(4 48 44 25 64)(5 49 45 26 65)(6 50 37 27 66)(7 51 38 19 67)(8 52 39 20 68)(9 53 40 21 69)(10 85 80 35 63)(11 86 81 36 55)(12 87 73 28 56)(13 88 74 29 57)(14 89 75 30 58)(15 90 76 31 59)(16 82 77 32 60)(17 83 78 33 61)(18 84 79 34 62)
(2 9)(3 8)(4 7)(5 6)(10 87 35 73)(11 86 36 81)(12 85 28 80)(13 84 29 79)(14 83 30 78)(15 82 31 77)(16 90 32 76)(17 89 33 75)(18 88 34 74)(19 48 38 64)(20 47 39 72)(21 46 40 71)(22 54 41 70)(23 53 42 69)(24 52 43 68)(25 51 44 67)(26 50 45 66)(27 49 37 65)(56 63)(57 62)(58 61)(59 60)

G:=sub<Sym(90)| (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,61)(8,62)(9,63)(10,53)(11,54)(12,46)(13,47)(14,48)(15,49)(16,50)(17,51)(18,52)(19,78)(20,79)(21,80)(22,81)(23,73)(24,74)(25,75)(26,76)(27,77)(28,71)(29,72)(30,64)(31,65)(32,66)(33,67)(34,68)(35,69)(36,70)(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90), (1,54,41,22,70)(2,46,42,23,71)(3,47,43,24,72)(4,48,44,25,64)(5,49,45,26,65)(6,50,37,27,66)(7,51,38,19,67)(8,52,39,20,68)(9,53,40,21,69)(10,85,80,35,63)(11,86,81,36,55)(12,87,73,28,56)(13,88,74,29,57)(14,89,75,30,58)(15,90,76,31,59)(16,82,77,32,60)(17,83,78,33,61)(18,84,79,34,62), (2,9)(3,8)(4,7)(5,6)(10,87,35,73)(11,86,36,81)(12,85,28,80)(13,84,29,79)(14,83,30,78)(15,82,31,77)(16,90,32,76)(17,89,33,75)(18,88,34,74)(19,48,38,64)(20,47,39,72)(21,46,40,71)(22,54,41,70)(23,53,42,69)(24,52,43,68)(25,51,44,67)(26,50,45,66)(27,49,37,65)(56,63)(57,62)(58,61)(59,60)>;

G:=Group( (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,61)(8,62)(9,63)(10,53)(11,54)(12,46)(13,47)(14,48)(15,49)(16,50)(17,51)(18,52)(19,78)(20,79)(21,80)(22,81)(23,73)(24,74)(25,75)(26,76)(27,77)(28,71)(29,72)(30,64)(31,65)(32,66)(33,67)(34,68)(35,69)(36,70)(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90), (1,54,41,22,70)(2,46,42,23,71)(3,47,43,24,72)(4,48,44,25,64)(5,49,45,26,65)(6,50,37,27,66)(7,51,38,19,67)(8,52,39,20,68)(9,53,40,21,69)(10,85,80,35,63)(11,86,81,36,55)(12,87,73,28,56)(13,88,74,29,57)(14,89,75,30,58)(15,90,76,31,59)(16,82,77,32,60)(17,83,78,33,61)(18,84,79,34,62), (2,9)(3,8)(4,7)(5,6)(10,87,35,73)(11,86,36,81)(12,85,28,80)(13,84,29,79)(14,83,30,78)(15,82,31,77)(16,90,32,76)(17,89,33,75)(18,88,34,74)(19,48,38,64)(20,47,39,72)(21,46,40,71)(22,54,41,70)(23,53,42,69)(24,52,43,68)(25,51,44,67)(26,50,45,66)(27,49,37,65)(56,63)(57,62)(58,61)(59,60) );

G=PermutationGroup([[(1,55),(2,56),(3,57),(4,58),(5,59),(6,60),(7,61),(8,62),(9,63),(10,53),(11,54),(12,46),(13,47),(14,48),(15,49),(16,50),(17,51),(18,52),(19,78),(20,79),(21,80),(22,81),(23,73),(24,74),(25,75),(26,76),(27,77),(28,71),(29,72),(30,64),(31,65),(32,66),(33,67),(34,68),(35,69),(36,70),(37,82),(38,83),(39,84),(40,85),(41,86),(42,87),(43,88),(44,89),(45,90)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90)], [(1,54,41,22,70),(2,46,42,23,71),(3,47,43,24,72),(4,48,44,25,64),(5,49,45,26,65),(6,50,37,27,66),(7,51,38,19,67),(8,52,39,20,68),(9,53,40,21,69),(10,85,80,35,63),(11,86,81,36,55),(12,87,73,28,56),(13,88,74,29,57),(14,89,75,30,58),(15,90,76,31,59),(16,82,77,32,60),(17,83,78,33,61),(18,84,79,34,62)], [(2,9),(3,8),(4,7),(5,6),(10,87,35,73),(11,86,36,81),(12,85,28,80),(13,84,29,79),(14,83,30,78),(15,82,31,77),(16,90,32,76),(17,89,33,75),(18,88,34,74),(19,48,38,64),(20,47,39,72),(21,46,40,71),(22,54,41,70),(23,53,42,69),(24,52,43,68),(25,51,44,67),(26,50,45,66),(27,49,37,65),(56,63),(57,62),(58,61),(59,60)]])

42 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D 5 6A6B6C9A9B9C 10 15A15B18A18B18C18D···18I30A30B45A···45F90A···90F
order122234444566699910151518181818···18303045···4590···90
size115524545454542101022244422210···10444···44···4

42 irreducible representations

dim1111122222222444444
type++++-+-+-+-++
imageC1C2C2C4C4S3Dic3D6Dic3D9Dic9D18Dic9F5C2xF5C3:F5C2xC3:F5C9:F5C2xC9:F5
kernelC2xC9:F5C9:F5D5xC18C9xD5C90C6xD5C3xD5C3xD5C30D10D5D5C10C18C9C6C3C2C1
# reps1212211113333112266

Matrix representation of C2xC9:F5 in GL6(F181)

18000000
01800000
00180000
00018000
00001800
00000180
,
127500000
1311770000
008164017
00017216417
00171641720
001701648
,
100000
010000
00180100
00180010
00180001
00180000
,
32760000
1081490000
000010
001000
000001
000100

G:=sub<GL(6,GF(181))| [180,0,0,0,0,0,0,180,0,0,0,0,0,0,180,0,0,0,0,0,0,180,0,0,0,0,0,0,180,0,0,0,0,0,0,180],[127,131,0,0,0,0,50,177,0,0,0,0,0,0,8,0,17,17,0,0,164,172,164,0,0,0,0,164,172,164,0,0,17,17,0,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,180,180,180,180,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[32,108,0,0,0,0,76,149,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0] >;

C2xC9:F5 in GAP, Magma, Sage, TeX

C_2\times C_9\rtimes F_5
% in TeX

G:=Group("C2xC9:F5");
// GroupNames label

G:=SmallGroup(360,44);
// by ID

G=gap.SmallGroup(360,44);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-5,-3,24,3267,741,2164,736,8645]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^9=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C2xC9:F5 in TeX

׿
x
:
Z
F
o
wr
Q
<