Copied to
clipboard

G = D5×D19order 380 = 22·5·19

Direct product of D5 and D19

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D5×D19, D95⋊C2, C51D38, C95⋊C22, C191D10, (D5×C19)⋊C2, (C5×D19)⋊C2, SmallGroup(380,7)

Series: Derived Chief Lower central Upper central

C1C95 — D5×D19
C1C19C95C5×D19 — D5×D19
C95 — D5×D19
C1

Generators and relations for D5×D19
 G = < a,b,c,d | a5=b2=c19=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

5C2
19C2
95C2
95C22
19C10
19D5
5C38
5D19
19D10
5D38

Smallest permutation representation of D5×D19
On 95 points
Generators in S95
(1 77 70 45 21)(2 78 71 46 22)(3 79 72 47 23)(4 80 73 48 24)(5 81 74 49 25)(6 82 75 50 26)(7 83 76 51 27)(8 84 58 52 28)(9 85 59 53 29)(10 86 60 54 30)(11 87 61 55 31)(12 88 62 56 32)(13 89 63 57 33)(14 90 64 39 34)(15 91 65 40 35)(16 92 66 41 36)(17 93 67 42 37)(18 94 68 43 38)(19 95 69 44 20)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 20)(39 90)(40 91)(41 92)(42 93)(43 94)(44 95)(45 77)(46 78)(47 79)(48 80)(49 81)(50 82)(51 83)(52 84)(53 85)(54 86)(55 87)(56 88)(57 89)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95)
(1 19)(2 18)(3 17)(4 16)(5 15)(6 14)(7 13)(8 12)(9 11)(20 21)(22 38)(23 37)(24 36)(25 35)(26 34)(27 33)(28 32)(29 31)(39 50)(40 49)(41 48)(42 47)(43 46)(44 45)(51 57)(52 56)(53 55)(58 62)(59 61)(63 76)(64 75)(65 74)(66 73)(67 72)(68 71)(69 70)(77 95)(78 94)(79 93)(80 92)(81 91)(82 90)(83 89)(84 88)(85 87)

G:=sub<Sym(95)| (1,77,70,45,21)(2,78,71,46,22)(3,79,72,47,23)(4,80,73,48,24)(5,81,74,49,25)(6,82,75,50,26)(7,83,76,51,27)(8,84,58,52,28)(9,85,59,53,29)(10,86,60,54,30)(11,87,61,55,31)(12,88,62,56,32)(13,89,63,57,33)(14,90,64,39,34)(15,91,65,40,35)(16,92,66,41,36)(17,93,67,42,37)(18,94,68,43,38)(19,95,69,44,20), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,20)(39,90)(40,91)(41,92)(42,93)(43,94)(44,95)(45,77)(46,78)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,88)(57,89), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(20,21)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(39,50)(40,49)(41,48)(42,47)(43,46)(44,45)(51,57)(52,56)(53,55)(58,62)(59,61)(63,76)(64,75)(65,74)(66,73)(67,72)(68,71)(69,70)(77,95)(78,94)(79,93)(80,92)(81,91)(82,90)(83,89)(84,88)(85,87)>;

G:=Group( (1,77,70,45,21)(2,78,71,46,22)(3,79,72,47,23)(4,80,73,48,24)(5,81,74,49,25)(6,82,75,50,26)(7,83,76,51,27)(8,84,58,52,28)(9,85,59,53,29)(10,86,60,54,30)(11,87,61,55,31)(12,88,62,56,32)(13,89,63,57,33)(14,90,64,39,34)(15,91,65,40,35)(16,92,66,41,36)(17,93,67,42,37)(18,94,68,43,38)(19,95,69,44,20), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,20)(39,90)(40,91)(41,92)(42,93)(43,94)(44,95)(45,77)(46,78)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,88)(57,89), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(20,21)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(39,50)(40,49)(41,48)(42,47)(43,46)(44,45)(51,57)(52,56)(53,55)(58,62)(59,61)(63,76)(64,75)(65,74)(66,73)(67,72)(68,71)(69,70)(77,95)(78,94)(79,93)(80,92)(81,91)(82,90)(83,89)(84,88)(85,87) );

G=PermutationGroup([[(1,77,70,45,21),(2,78,71,46,22),(3,79,72,47,23),(4,80,73,48,24),(5,81,74,49,25),(6,82,75,50,26),(7,83,76,51,27),(8,84,58,52,28),(9,85,59,53,29),(10,86,60,54,30),(11,87,61,55,31),(12,88,62,56,32),(13,89,63,57,33),(14,90,64,39,34),(15,91,65,40,35),(16,92,66,41,36),(17,93,67,42,37),(18,94,68,43,38),(19,95,69,44,20)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,20),(39,90),(40,91),(41,92),(42,93),(43,94),(44,95),(45,77),(46,78),(47,79),(48,80),(49,81),(50,82),(51,83),(52,84),(53,85),(54,86),(55,87),(56,88),(57,89)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)], [(1,19),(2,18),(3,17),(4,16),(5,15),(6,14),(7,13),(8,12),(9,11),(20,21),(22,38),(23,37),(24,36),(25,35),(26,34),(27,33),(28,32),(29,31),(39,50),(40,49),(41,48),(42,47),(43,46),(44,45),(51,57),(52,56),(53,55),(58,62),(59,61),(63,76),(64,75),(65,74),(66,73),(67,72),(68,71),(69,70),(77,95),(78,94),(79,93),(80,92),(81,91),(82,90),(83,89),(84,88),(85,87)]])

44 conjugacy classes

class 1 2A2B2C5A5B10A10B19A···19I38A···38I95A···95R
order122255101019···1938···3895···95
size1519952238382···210···104···4

44 irreducible representations

dim111122224
type+++++++++
imageC1C2C2C2D5D10D19D38D5×D19
kernelD5×D19D5×C19C5×D19D95D19C19D5C5C1
# reps1111229918

Matrix representation of D5×D19 in GL4(𝔽191) generated by

1000
0100
001123
0021101
,
1000
0100
001123
000190
,
74100
1587700
0010
0001
,
951400
1749600
0010
0001
G:=sub<GL(4,GF(191))| [1,0,0,0,0,1,0,0,0,0,1,21,0,0,123,101],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,123,190],[74,158,0,0,1,77,0,0,0,0,1,0,0,0,0,1],[95,174,0,0,14,96,0,0,0,0,1,0,0,0,0,1] >;

D5×D19 in GAP, Magma, Sage, TeX

D_5\times D_{19}
% in TeX

G:=Group("D5xD19");
// GroupNames label

G:=SmallGroup(380,7);
// by ID

G=gap.SmallGroup(380,7);
# by ID

G:=PCGroup([4,-2,-2,-5,-19,102,5763]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^19=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D5×D19 in TeX

׿
×
𝔽