Copied to
clipboard

G = C7×C7⋊C8order 392 = 23·72

Direct product of C7 and C7⋊C8

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C7×C7⋊C8, C7⋊C56, C14.C28, C723C8, C28.8D7, C28.2C14, C14.4Dic7, C4.2(C7×D7), C2.(C7×Dic7), (C7×C28).3C2, (C7×C14).2C4, SmallGroup(392,14)

Series: Derived Chief Lower central Upper central

C1C7 — C7×C7⋊C8
C1C7C14C28C7×C28 — C7×C7⋊C8
C7 — C7×C7⋊C8
C1C28

Generators and relations for C7×C7⋊C8
 G = < a,b,c | a7=b7=c8=1, ab=ba, ac=ca, cbc-1=b-1 >

2C7
2C7
2C7
2C14
2C14
2C14
7C8
2C28
2C28
2C28
7C56

Smallest permutation representation of C7×C7⋊C8
On 56 points
Generators in S56
(1 41 19 49 31 16 39)(2 42 20 50 32 9 40)(3 43 21 51 25 10 33)(4 44 22 52 26 11 34)(5 45 23 53 27 12 35)(6 46 24 54 28 13 36)(7 47 17 55 29 14 37)(8 48 18 56 30 15 38)
(1 31 41 16 19 39 49)(2 50 40 20 9 42 32)(3 25 43 10 21 33 51)(4 52 34 22 11 44 26)(5 27 45 12 23 35 53)(6 54 36 24 13 46 28)(7 29 47 14 17 37 55)(8 56 38 18 15 48 30)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)

G:=sub<Sym(56)| (1,41,19,49,31,16,39)(2,42,20,50,32,9,40)(3,43,21,51,25,10,33)(4,44,22,52,26,11,34)(5,45,23,53,27,12,35)(6,46,24,54,28,13,36)(7,47,17,55,29,14,37)(8,48,18,56,30,15,38), (1,31,41,16,19,39,49)(2,50,40,20,9,42,32)(3,25,43,10,21,33,51)(4,52,34,22,11,44,26)(5,27,45,12,23,35,53)(6,54,36,24,13,46,28)(7,29,47,14,17,37,55)(8,56,38,18,15,48,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)>;

G:=Group( (1,41,19,49,31,16,39)(2,42,20,50,32,9,40)(3,43,21,51,25,10,33)(4,44,22,52,26,11,34)(5,45,23,53,27,12,35)(6,46,24,54,28,13,36)(7,47,17,55,29,14,37)(8,48,18,56,30,15,38), (1,31,41,16,19,39,49)(2,50,40,20,9,42,32)(3,25,43,10,21,33,51)(4,52,34,22,11,44,26)(5,27,45,12,23,35,53)(6,54,36,24,13,46,28)(7,29,47,14,17,37,55)(8,56,38,18,15,48,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56) );

G=PermutationGroup([[(1,41,19,49,31,16,39),(2,42,20,50,32,9,40),(3,43,21,51,25,10,33),(4,44,22,52,26,11,34),(5,45,23,53,27,12,35),(6,46,24,54,28,13,36),(7,47,17,55,29,14,37),(8,48,18,56,30,15,38)], [(1,31,41,16,19,39,49),(2,50,40,20,9,42,32),(3,25,43,10,21,33,51),(4,52,34,22,11,44,26),(5,27,45,12,23,35,53),(6,54,36,24,13,46,28),(7,29,47,14,17,37,55),(8,56,38,18,15,48,30)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56)]])

140 conjugacy classes

class 1  2 4A4B7A···7F7G···7AA8A8B8C8D14A···14F14G···14AA28A···28L28M···28BB56A···56X
order12447···77···7888814···1414···1428···2828···2856···56
size11111···12···277771···12···21···12···27···7

140 irreducible representations

dim11111111222222
type+++-
imageC1C2C4C7C8C14C28C56D7Dic7C7⋊C8C7×D7C7×Dic7C7×C7⋊C8
kernelC7×C7⋊C8C7×C28C7×C14C7⋊C8C72C28C14C7C28C14C7C4C2C1
# reps1126461224336181836

Matrix representation of C7×C7⋊C8 in GL2(𝔽29) generated by

230
023
,
70
025
,
017
10
G:=sub<GL(2,GF(29))| [23,0,0,23],[7,0,0,25],[0,1,17,0] >;

C7×C7⋊C8 in GAP, Magma, Sage, TeX

C_7\times C_7\rtimes C_8
% in TeX

G:=Group("C7xC7:C8");
// GroupNames label

G:=SmallGroup(392,14);
// by ID

G=gap.SmallGroup(392,14);
# by ID

G:=PCGroup([5,-2,-7,-2,-2,-7,70,42,8404]);
// Polycyclic

G:=Group<a,b,c|a^7=b^7=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C7×C7⋊C8 in TeX

׿
×
𝔽