metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: D200, C25⋊1D8, C5.D40, C8⋊1D25, C200⋊1C2, C50.3D4, C40.2D5, D100⋊1C2, C4.10D50, C10.3D20, C2.5D100, C20.42D10, C100.10C22, sometimes denoted D400 or Dih200 or Dih400, SmallGroup(400,8)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D200
G = < a,b | a200=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)
(1 175)(2 174)(3 173)(4 172)(5 171)(6 170)(7 169)(8 168)(9 167)(10 166)(11 165)(12 164)(13 163)(14 162)(15 161)(16 160)(17 159)(18 158)(19 157)(20 156)(21 155)(22 154)(23 153)(24 152)(25 151)(26 150)(27 149)(28 148)(29 147)(30 146)(31 145)(32 144)(33 143)(34 142)(35 141)(36 140)(37 139)(38 138)(39 137)(40 136)(41 135)(42 134)(43 133)(44 132)(45 131)(46 130)(47 129)(48 128)(49 127)(50 126)(51 125)(52 124)(53 123)(54 122)(55 121)(56 120)(57 119)(58 118)(59 117)(60 116)(61 115)(62 114)(63 113)(64 112)(65 111)(66 110)(67 109)(68 108)(69 107)(70 106)(71 105)(72 104)(73 103)(74 102)(75 101)(76 100)(77 99)(78 98)(79 97)(80 96)(81 95)(82 94)(83 93)(84 92)(85 91)(86 90)(87 89)(176 200)(177 199)(178 198)(179 197)(180 196)(181 195)(182 194)(183 193)(184 192)(185 191)(186 190)(187 189)
G:=sub<Sym(200)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200), (1,175)(2,174)(3,173)(4,172)(5,171)(6,170)(7,169)(8,168)(9,167)(10,166)(11,165)(12,164)(13,163)(14,162)(15,161)(16,160)(17,159)(18,158)(19,157)(20,156)(21,155)(22,154)(23,153)(24,152)(25,151)(26,150)(27,149)(28,148)(29,147)(30,146)(31,145)(32,144)(33,143)(34,142)(35,141)(36,140)(37,139)(38,138)(39,137)(40,136)(41,135)(42,134)(43,133)(44,132)(45,131)(46,130)(47,129)(48,128)(49,127)(50,126)(51,125)(52,124)(53,123)(54,122)(55,121)(56,120)(57,119)(58,118)(59,117)(60,116)(61,115)(62,114)(63,113)(64,112)(65,111)(66,110)(67,109)(68,108)(69,107)(70,106)(71,105)(72,104)(73,103)(74,102)(75,101)(76,100)(77,99)(78,98)(79,97)(80,96)(81,95)(82,94)(83,93)(84,92)(85,91)(86,90)(87,89)(176,200)(177,199)(178,198)(179,197)(180,196)(181,195)(182,194)(183,193)(184,192)(185,191)(186,190)(187,189)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200), (1,175)(2,174)(3,173)(4,172)(5,171)(6,170)(7,169)(8,168)(9,167)(10,166)(11,165)(12,164)(13,163)(14,162)(15,161)(16,160)(17,159)(18,158)(19,157)(20,156)(21,155)(22,154)(23,153)(24,152)(25,151)(26,150)(27,149)(28,148)(29,147)(30,146)(31,145)(32,144)(33,143)(34,142)(35,141)(36,140)(37,139)(38,138)(39,137)(40,136)(41,135)(42,134)(43,133)(44,132)(45,131)(46,130)(47,129)(48,128)(49,127)(50,126)(51,125)(52,124)(53,123)(54,122)(55,121)(56,120)(57,119)(58,118)(59,117)(60,116)(61,115)(62,114)(63,113)(64,112)(65,111)(66,110)(67,109)(68,108)(69,107)(70,106)(71,105)(72,104)(73,103)(74,102)(75,101)(76,100)(77,99)(78,98)(79,97)(80,96)(81,95)(82,94)(83,93)(84,92)(85,91)(86,90)(87,89)(176,200)(177,199)(178,198)(179,197)(180,196)(181,195)(182,194)(183,193)(184,192)(185,191)(186,190)(187,189) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)], [(1,175),(2,174),(3,173),(4,172),(5,171),(6,170),(7,169),(8,168),(9,167),(10,166),(11,165),(12,164),(13,163),(14,162),(15,161),(16,160),(17,159),(18,158),(19,157),(20,156),(21,155),(22,154),(23,153),(24,152),(25,151),(26,150),(27,149),(28,148),(29,147),(30,146),(31,145),(32,144),(33,143),(34,142),(35,141),(36,140),(37,139),(38,138),(39,137),(40,136),(41,135),(42,134),(43,133),(44,132),(45,131),(46,130),(47,129),(48,128),(49,127),(50,126),(51,125),(52,124),(53,123),(54,122),(55,121),(56,120),(57,119),(58,118),(59,117),(60,116),(61,115),(62,114),(63,113),(64,112),(65,111),(66,110),(67,109),(68,108),(69,107),(70,106),(71,105),(72,104),(73,103),(74,102),(75,101),(76,100),(77,99),(78,98),(79,97),(80,96),(81,95),(82,94),(83,93),(84,92),(85,91),(86,90),(87,89),(176,200),(177,199),(178,198),(179,197),(180,196),(181,195),(182,194),(183,193),(184,192),(185,191),(186,190),(187,189)]])
103 conjugacy classes
class | 1 | 2A | 2B | 2C | 4 | 5A | 5B | 8A | 8B | 10A | 10B | 20A | 20B | 20C | 20D | 25A | ··· | 25J | 40A | ··· | 40H | 50A | ··· | 50J | 100A | ··· | 100T | 200A | ··· | 200AN |
order | 1 | 2 | 2 | 2 | 4 | 5 | 5 | 8 | 8 | 10 | 10 | 20 | 20 | 20 | 20 | 25 | ··· | 25 | 40 | ··· | 40 | 50 | ··· | 50 | 100 | ··· | 100 | 200 | ··· | 200 |
size | 1 | 1 | 100 | 100 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
103 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | D4 | D5 | D8 | D10 | D20 | D25 | D40 | D50 | D100 | D200 |
kernel | D200 | C200 | D100 | C50 | C40 | C25 | C20 | C10 | C8 | C5 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 4 | 10 | 8 | 10 | 20 | 40 |
Matrix representation of D200 ►in GL2(𝔽401) generated by
22 | 265 |
136 | 16 |
190 | 75 |
48 | 211 |
G:=sub<GL(2,GF(401))| [22,136,265,16],[190,48,75,211] >;
D200 in GAP, Magma, Sage, TeX
D_{200}
% in TeX
G:=Group("D200");
// GroupNames label
G:=SmallGroup(400,8);
// by ID
G=gap.SmallGroup(400,8);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,73,79,218,50,4324,628,11525]);
// Polycyclic
G:=Group<a,b|a^200=b^2=1,b*a*b=a^-1>;
// generators/relations
Export