Copied to
clipboard

G = D7≀C2order 392 = 23·72

Wreath product of D7 by C2

non-abelian, soluble, monomial

Aliases: D7C2, C72⋊D4, D72⋊C2, C72⋊C4⋊C2, C7⋊D7.1C22, SmallGroup(392,37)

Series: Derived Chief Lower central Upper central

C1C72C7⋊D7 — D7≀C2
C1C72C7⋊D7D72 — D7≀C2
C72C7⋊D7 — D7≀C2
C1

Generators and relations for D7≀C2
 G = < a,b,c,d | a7=b7=c4=d2=1, ab=ba, cac-1=b, dad=cbc-1=a-1, bd=db, dcd=c-1 >

14C2
14C2
49C2
2C7
2C7
4C7
49C4
49C22
49C22
2D7
2D7
14D7
14C14
14D7
14C14
28D7
49D4
14D14
14D14
2C7×D7
2C7×D7

Character table of D7≀C2

 class 12A2B2C47A7B7C7D7E7F7G7H7I14A14B14C14D14E14F
 size 114144998444444888282828282828
ρ111111111111111111111    trivial
ρ211-11-1111111111-1-1111-1    linear of order 2
ρ31-111-111111111111-1-1-11    linear of order 2
ρ41-1-111111111111-1-1-1-1-1-1    linear of order 2
ρ5200-20222222222000000    orthogonal lifted from D4
ρ64-200076+2ζ774+2ζ73ζ767+2ζ7572+2ζ7473+275+2ζ72767-17572-17473-100767757274730    orthogonal faithful
ρ74-200075+2ζ7276+2ζ7ζ7572+2ζ7473+2ζ767+274+2ζ737572-17473-1767-100757274737670    orthogonal faithful
ρ840200ζ7572+2ζ767+276+2ζ775+2ζ7274+2ζ73ζ7473+27473-1767-17572-1ζ7473ζ767000ζ7572    orthogonal faithful
ρ94-200074+2ζ7375+2ζ72ζ7473+2ζ767+2ζ7572+276+2ζ77473-1767-17572-100747376775720    orthogonal faithful
ρ1040-200ζ7473+2ζ7572+275+2ζ7274+2ζ7376+2ζ7ζ767+2767-17572-17473-176775720007473    orthogonal faithful
ρ1140-200ζ7572+2ζ767+276+2ζ775+2ζ7274+2ζ73ζ7473+27473-1767-17572-174737670007572    orthogonal faithful
ρ124200075+2ζ7276+2ζ7ζ7572+2ζ7473+2ζ767+274+2ζ737572-17473-1767-100ζ7572ζ7473ζ7670    orthogonal faithful
ρ1340200ζ767+2ζ7473+274+2ζ7376+2ζ775+2ζ72ζ7572+27572-17473-1767-1ζ7572ζ7473000ζ767    orthogonal faithful
ρ1440-200ζ767+2ζ7473+274+2ζ7376+2ζ775+2ζ72ζ7572+27572-17473-1767-175727473000767    orthogonal faithful
ρ154200074+2ζ7375+2ζ72ζ7473+2ζ767+2ζ7572+276+2ζ77473-1767-17572-100ζ7473ζ767ζ75720    orthogonal faithful
ρ164200076+2ζ774+2ζ73ζ767+2ζ7572+2ζ7473+275+2ζ72767-17572-17473-100ζ767ζ7572ζ74730    orthogonal faithful
ρ1740200ζ7473+2ζ7572+275+2ζ7274+2ζ7376+2ζ7ζ767+2767-17572-17473-1ζ767ζ7572000ζ7473    orthogonal faithful
ρ1880000-2ζ76-2ζ7-2-2ζ74-2ζ73-2-2ζ75-2ζ72-2-2ζ74-2ζ73-2-2ζ76-2ζ7-2-2ζ75-2ζ72-2ζ75+2ζ74+2ζ7372+2767473+2ζ7+2ζ76+2ζ75+2ζ727+2000000    orthogonal faithful
ρ1980000-2ζ75-2ζ72-2-2ζ76-2ζ7-2-2ζ74-2ζ73-2-2ζ76-2ζ7-2-2ζ75-2ζ72-2-2ζ74-2ζ73-2767473+2ζ7+2ζ76+2ζ75+2ζ727+2ζ75+2ζ74+2ζ7372+2000000    orthogonal faithful
ρ2080000-2ζ74-2ζ73-2-2ζ75-2ζ72-2-2ζ76-2ζ7-2-2ζ75-2ζ72-2-2ζ74-2ζ73-2-2ζ76-2ζ7-2ζ76+2ζ75+2ζ727+2ζ75+2ζ74+2ζ7372+2767473+2ζ7+2000000    orthogonal faithful

Permutation representations of D7≀C2
On 14 points - transitive group 14T20
Generators in S14
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)
(1 2 3 4 5 6 7)(8 14 13 12 11 10 9)
(1 8)(2 9 7 14)(3 10 6 13)(4 11 5 12)
(1 8)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)

G:=sub<Sym(14)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,2,3,4,5,6,7)(8,14,13,12,11,10,9), (1,8)(2,9,7,14)(3,10,6,13)(4,11,5,12), (1,8)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,2,3,4,5,6,7)(8,14,13,12,11,10,9), (1,8)(2,9,7,14)(3,10,6,13)(4,11,5,12), (1,8)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14)], [(1,2,3,4,5,6,7),(8,14,13,12,11,10,9)], [(1,8),(2,9,7,14),(3,10,6,13),(4,11,5,12)], [(1,8),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9)]])

G:=TransitiveGroup(14,20);

On 28 points - transitive group 28T53
Generators in S28
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 21 20 19 18 17 16)(22 28 27 26 25 24 23)
(1 27 8 15)(2 28 14 21)(3 22 13 20)(4 23 12 19)(5 24 11 18)(6 25 10 17)(7 26 9 16)
(1 15)(2 21)(3 20)(4 19)(5 18)(6 17)(7 16)(8 27)(9 26)(10 25)(11 24)(12 23)(13 22)(14 28)

G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,21,20,19,18,17,16)(22,28,27,26,25,24,23), (1,27,8,15)(2,28,14,21)(3,22,13,20)(4,23,12,19)(5,24,11,18)(6,25,10,17)(7,26,9,16), (1,15)(2,21)(3,20)(4,19)(5,18)(6,17)(7,16)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,21,20,19,18,17,16)(22,28,27,26,25,24,23), (1,27,8,15)(2,28,14,21)(3,22,13,20)(4,23,12,19)(5,24,11,18)(6,25,10,17)(7,26,9,16), (1,15)(2,21)(3,20)(4,19)(5,18)(6,17)(7,16)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,21,20,19,18,17,16),(22,28,27,26,25,24,23)], [(1,27,8,15),(2,28,14,21),(3,22,13,20),(4,23,12,19),(5,24,11,18),(6,25,10,17),(7,26,9,16)], [(1,15),(2,21),(3,20),(4,19),(5,18),(6,17),(7,16),(8,27),(9,26),(10,25),(11,24),(12,23),(13,22),(14,28)]])

G:=TransitiveGroup(28,53);

On 28 points - transitive group 28T54
Generators in S28
(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 2 3 6 4 7 5)(8 11 9 12 10 13 14)
(1 22 14 16)(2 23 13 15)(3 24 10 21)(4 26 9 19)(5 28 8 17)(6 25 12 20)(7 27 11 18)
(1 10)(2 13)(3 14)(4 11)(5 12)(6 8)(7 9)(16 21)(17 20)(18 19)(22 24)(25 28)(26 27)

G:=sub<Sym(28)| (15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,2,3,6,4,7,5)(8,11,9,12,10,13,14), (1,22,14,16)(2,23,13,15)(3,24,10,21)(4,26,9,19)(5,28,8,17)(6,25,12,20)(7,27,11,18), (1,10)(2,13)(3,14)(4,11)(5,12)(6,8)(7,9)(16,21)(17,20)(18,19)(22,24)(25,28)(26,27)>;

G:=Group( (15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,2,3,6,4,7,5)(8,11,9,12,10,13,14), (1,22,14,16)(2,23,13,15)(3,24,10,21)(4,26,9,19)(5,28,8,17)(6,25,12,20)(7,27,11,18), (1,10)(2,13)(3,14)(4,11)(5,12)(6,8)(7,9)(16,21)(17,20)(18,19)(22,24)(25,28)(26,27) );

G=PermutationGroup([[(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,2,3,6,4,7,5),(8,11,9,12,10,13,14)], [(1,22,14,16),(2,23,13,15),(3,24,10,21),(4,26,9,19),(5,28,8,17),(6,25,12,20),(7,27,11,18)], [(1,10),(2,13),(3,14),(4,11),(5,12),(6,8),(7,9),(16,21),(17,20),(18,19),(22,24),(25,28),(26,27)]])

G:=TransitiveGroup(28,54);

On 28 points - transitive group 28T55
Generators in S28
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 21 20 19 18 17 16)(22 28 27 26 25 24 23)
(1 22)(2 23 7 28)(3 24 6 27)(4 25 5 26)(8 17 11 20)(9 18 10 19)(12 21 14 16)(13 15)
(1 15)(2 21)(3 20)(4 19)(5 18)(6 17)(7 16)(8 27)(9 26)(10 25)(11 24)(12 23)(13 22)(14 28)

G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,21,20,19,18,17,16)(22,28,27,26,25,24,23), (1,22)(2,23,7,28)(3,24,6,27)(4,25,5,26)(8,17,11,20)(9,18,10,19)(12,21,14,16)(13,15), (1,15)(2,21)(3,20)(4,19)(5,18)(6,17)(7,16)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,21,20,19,18,17,16)(22,28,27,26,25,24,23), (1,22)(2,23,7,28)(3,24,6,27)(4,25,5,26)(8,17,11,20)(9,18,10,19)(12,21,14,16)(13,15), (1,15)(2,21)(3,20)(4,19)(5,18)(6,17)(7,16)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,21,20,19,18,17,16),(22,28,27,26,25,24,23)], [(1,22),(2,23,7,28),(3,24,6,27),(4,25,5,26),(8,17,11,20),(9,18,10,19),(12,21,14,16),(13,15)], [(1,15),(2,21),(3,20),(4,19),(5,18),(6,17),(7,16),(8,27),(9,26),(10,25),(11,24),(12,23),(13,22),(14,28)]])

G:=TransitiveGroup(28,55);

On 28 points - transitive group 28T57
Generators in S28
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 3 5 7 2 4 6)(8 12 9 13 10 14 11)(15 20 18 16 21 19 17)(22 25 28 24 27 23 26)
(1 22)(2 26 7 25)(3 23 6 28)(4 27 5 24)(8 20 11 19)(9 15 10 17)(12 21 14 18)(13 16)
(1 16)(2 15)(3 21)(4 20)(5 19)(6 18)(7 17)(8 27)(9 26)(10 25)(11 24)(12 23)(13 22)(14 28)

G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,3,5,7,2,4,6)(8,12,9,13,10,14,11)(15,20,18,16,21,19,17)(22,25,28,24,27,23,26), (1,22)(2,26,7,25)(3,23,6,28)(4,27,5,24)(8,20,11,19)(9,15,10,17)(12,21,14,18)(13,16), (1,16)(2,15)(3,21)(4,20)(5,19)(6,18)(7,17)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,3,5,7,2,4,6)(8,12,9,13,10,14,11)(15,20,18,16,21,19,17)(22,25,28,24,27,23,26), (1,22)(2,26,7,25)(3,23,6,28)(4,27,5,24)(8,20,11,19)(9,15,10,17)(12,21,14,18)(13,16), (1,16)(2,15)(3,21)(4,20)(5,19)(6,18)(7,17)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,3,5,7,2,4,6),(8,12,9,13,10,14,11),(15,20,18,16,21,19,17),(22,25,28,24,27,23,26)], [(1,22),(2,26,7,25),(3,23,6,28),(4,27,5,24),(8,20,11,19),(9,15,10,17),(12,21,14,18),(13,16)], [(1,16),(2,15),(3,21),(4,20),(5,19),(6,18),(7,17),(8,27),(9,26),(10,25),(11,24),(12,23),(13,22),(14,28)]])

G:=TransitiveGroup(28,57);

Polynomial with Galois group D7≀C2 over ℚ
actionf(x)Disc(f)
14T20x14+210x12-3164x11+63455x10-534016x9+7977046x8-27661364x7+1002627612x6+6022284016x5-28570776528x4+138886748224x3-3146649429952x2+4701085568256x-596180527260162108·57·724·197·292·4112·892·1812·4092·17212·50232·162292

Matrix representation of D7≀C2 in GL4(𝔽29) generated by

21100
232600
26282528
922222
,
21100
232600
10221
4282725
,
00211
25281925
01910
11180
,
00211
25281925
0010
1080
G:=sub<GL(4,GF(29))| [21,23,26,9,1,26,28,22,0,0,25,2,0,0,28,22],[21,23,1,4,1,26,0,28,0,0,22,27,0,0,1,25],[0,25,0,1,0,28,19,11,21,19,1,8,1,25,0,0],[0,25,0,1,0,28,0,0,21,19,1,8,1,25,0,0] >;

D7≀C2 in GAP, Magma, Sage, TeX

D_7\wr C_2
% in TeX

G:=Group("D7wrC2");
// GroupNames label

G:=SmallGroup(392,37);
// by ID

G=gap.SmallGroup(392,37);
# by ID

G:=PCGroup([5,-2,-2,-2,-7,7,61,963,568,253,109,2114]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^7=c^4=d^2=1,a*b=b*a,c*a*c^-1=b,d*a*d=c*b*c^-1=a^-1,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D7≀C2 in TeX
Character table of D7≀C2 in TeX

׿
×
𝔽