metabelian, supersoluble, monomial
Aliases: Dic5.1F5, C52⋊3M4(2), Dic5.8D10, C5⋊C8⋊2D5, C2.7(D5×F5), C10.7(C4×D5), C5⋊4(C4.F5), C5⋊1(C8⋊D5), C52⋊3C8⋊4C2, C10.34(C2×F5), (C5×Dic5).1C4, Dic5⋊2D5.3C2, (C5×Dic5).9C22, (C5×C5⋊C8)⋊4C2, (C2×C5⋊D5).2C4, (C5×C10).7(C2×C4), SmallGroup(400,123)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic5.F5
G = < a,b,c,d | a10=c5=1, b2=d4=a5, bab-1=a-1, ac=ca, ad=da, bc=cb, dbd-1=a5b, dcd-1=c3 >
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 11 6 16)(2 20 7 15)(3 19 8 14)(4 18 9 13)(5 17 10 12)(21 36 26 31)(22 35 27 40)(23 34 28 39)(24 33 29 38)(25 32 30 37)
(1 7 3 9 5)(2 8 4 10 6)(11 15 19 13 17)(12 16 20 14 18)(21 23 25 27 29)(22 24 26 28 30)(31 39 37 35 33)(32 40 38 36 34)
(1 36 16 26 6 31 11 21)(2 37 17 27 7 32 12 22)(3 38 18 28 8 33 13 23)(4 39 19 29 9 34 14 24)(5 40 20 30 10 35 15 25)
G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,11,6,16)(2,20,7,15)(3,19,8,14)(4,18,9,13)(5,17,10,12)(21,36,26,31)(22,35,27,40)(23,34,28,39)(24,33,29,38)(25,32,30,37), (1,7,3,9,5)(2,8,4,10,6)(11,15,19,13,17)(12,16,20,14,18)(21,23,25,27,29)(22,24,26,28,30)(31,39,37,35,33)(32,40,38,36,34), (1,36,16,26,6,31,11,21)(2,37,17,27,7,32,12,22)(3,38,18,28,8,33,13,23)(4,39,19,29,9,34,14,24)(5,40,20,30,10,35,15,25)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,11,6,16)(2,20,7,15)(3,19,8,14)(4,18,9,13)(5,17,10,12)(21,36,26,31)(22,35,27,40)(23,34,28,39)(24,33,29,38)(25,32,30,37), (1,7,3,9,5)(2,8,4,10,6)(11,15,19,13,17)(12,16,20,14,18)(21,23,25,27,29)(22,24,26,28,30)(31,39,37,35,33)(32,40,38,36,34), (1,36,16,26,6,31,11,21)(2,37,17,27,7,32,12,22)(3,38,18,28,8,33,13,23)(4,39,19,29,9,34,14,24)(5,40,20,30,10,35,15,25) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,11,6,16),(2,20,7,15),(3,19,8,14),(4,18,9,13),(5,17,10,12),(21,36,26,31),(22,35,27,40),(23,34,28,39),(24,33,29,38),(25,32,30,37)], [(1,7,3,9,5),(2,8,4,10,6),(11,15,19,13,17),(12,16,20,14,18),(21,23,25,27,29),(22,24,26,28,30),(31,39,37,35,33),(32,40,38,36,34)], [(1,36,16,26,6,31,11,21),(2,37,17,27,7,32,12,22),(3,38,18,28,8,33,13,23),(4,39,19,29,9,34,14,24),(5,40,20,30,10,35,15,25)]])
34 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 4C | 5A | 5B | 5C | 5D | 5E | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 10D | 10E | 20A | 20B | 20C | 20D | 20E | 20F | 40A | ··· | 40H |
order | 1 | 2 | 2 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 50 | 5 | 5 | 10 | 2 | 2 | 4 | 8 | 8 | 10 | 10 | 50 | 50 | 2 | 2 | 4 | 8 | 8 | 10 | 10 | 10 | 10 | 20 | 20 | 10 | ··· | 10 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D5 | M4(2) | D10 | C4×D5 | C8⋊D5 | F5 | C2×F5 | C4.F5 | D5×F5 | Dic5.F5 |
kernel | Dic5.F5 | C5×C5⋊C8 | C52⋊3C8 | Dic5⋊2D5 | C5×Dic5 | C2×C5⋊D5 | C5⋊C8 | C52 | Dic5 | C10 | C5 | Dic5 | C10 | C5 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 8 | 1 | 1 | 2 | 2 | 2 |
Matrix representation of Dic5.F5 ►in GL6(𝔽41)
35 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
32 | 0 | 0 | 0 | 0 | 0 |
28 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 1 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 1 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 1 | 0 |
13 | 23 | 0 | 0 | 0 | 0 |
18 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(41))| [35,40,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[32,28,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,40,40,40,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0],[13,18,0,0,0,0,23,28,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0] >;
Dic5.F5 in GAP, Magma, Sage, TeX
{\rm Dic}_5.F_5
% in TeX
G:=Group("Dic5.F5");
// GroupNames label
G:=SmallGroup(400,123);
// by ID
G=gap.SmallGroup(400,123);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,121,55,50,970,5765,2897]);
// Polycyclic
G:=Group<a,b,c,d|a^10=c^5=1,b^2=d^4=a^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^5*b,d*c*d^-1=c^3>;
// generators/relations
Export