Extensions 1→N→G→Q→1 with N=C5×Dic5 and Q=C4

Direct product G=N×Q with N=C5×Dic5 and Q=C4
dρLabelID
Dic5×C2080Dic5xC20400,83

Semidirect products G=N:Q with N=C5×Dic5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×Dic5)⋊1C4 = D5.Dic10φ: C4/C1C4 ⊆ Out C5×Dic5808-(C5xDic5):1C4400,119
(C5×Dic5)⋊2C4 = Dic5⋊F5φ: C4/C1C4 ⊆ Out C5×Dic5208+(C5xDic5):2C4400,126
(C5×Dic5)⋊3C4 = Dic5×F5φ: C4/C1C4 ⊆ Out C5×Dic5808-(C5xDic5):3C4400,117
(C5×Dic5)⋊4C4 = C523C42φ: C4/C1C4 ⊆ Out C5×Dic5208+(C5xDic5):4C4400,124
(C5×Dic5)⋊5C4 = C20×F5φ: C4/C2C2 ⊆ Out C5×Dic5804(C5xDic5):5C4400,137
(C5×Dic5)⋊6C4 = Dic5⋊Dic5φ: C4/C2C2 ⊆ Out C5×Dic580(C5xDic5):6C4400,74
(C5×Dic5)⋊7C4 = C205F5φ: C4/C2C2 ⊆ Out C5×Dic5804(C5xDic5):7C4400,145
(C5×Dic5)⋊8C4 = Dic52φ: C4/C2C2 ⊆ Out C5×Dic580(C5xDic5):8C4400,71
(C5×Dic5)⋊9C4 = C4×D5.D5φ: C4/C2C2 ⊆ Out C5×Dic5804(C5xDic5):9C4400,144
(C5×Dic5)⋊10C4 = C5×C10.D4φ: C4/C2C2 ⊆ Out C5×Dic580(C5xDic5):10C4400,84
(C5×Dic5)⋊11C4 = C5×C4⋊F5φ: C4/C2C2 ⊆ Out C5×Dic5804(C5xDic5):11C4400,138

Non-split extensions G=N.Q with N=C5×Dic5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×Dic5).1C4 = Dic5.F5φ: C4/C1C4 ⊆ Out C5×Dic5408+(C5xDic5).1C4400,123
(C5×Dic5).2C4 = C524M4(2)φ: C4/C1C4 ⊆ Out C5×Dic5808-(C5xDic5).2C4400,128
(C5×Dic5).3C4 = Dic5.4F5φ: C4/C1C4 ⊆ Out C5×Dic5408+(C5xDic5).3C4400,121
(C5×Dic5).4C4 = D10.2F5φ: C4/C1C4 ⊆ Out C5×Dic5808-(C5xDic5).4C4400,127
(C5×Dic5).5C4 = C10×C5⋊C8φ: C4/C2C2 ⊆ Out C5×Dic580(C5xDic5).5C4400,139
(C5×Dic5).6C4 = C20.30D10φ: C4/C2C2 ⊆ Out C5×Dic5804(C5xDic5).6C4400,62
(C5×Dic5).7C4 = C102.C4φ: C4/C2C2 ⊆ Out C5×Dic5404(C5xDic5).7C4400,147
(C5×Dic5).8C4 = D5×C52C8φ: C4/C2C2 ⊆ Out C5×Dic5804(C5xDic5).8C4400,60
(C5×Dic5).9C4 = C2×C523C8φ: C4/C2C2 ⊆ Out C5×Dic580(C5xDic5).9C4400,146
(C5×Dic5).10C4 = C5×C8⋊D5φ: C4/C2C2 ⊆ Out C5×Dic5802(C5xDic5).10C4400,77
(C5×Dic5).11C4 = C5×C22.F5φ: C4/C2C2 ⊆ Out C5×Dic5404(C5xDic5).11C4400,140
(C5×Dic5).12C4 = D5×C40φ: trivial image802(C5xDic5).12C4400,76

׿
×
𝔽