Extensions 1→N→G→Q→1 with N=C10×F5 and Q=C2

Direct product G=N×Q with N=C10×F5 and Q=C2
dρLabelID
F5×C2×C1080F5xC2xC10400,214

Semidirect products G=N:Q with N=C10×F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10×F5)⋊1C2 = D5.D20φ: C2/C1C2 ⊆ Out C10×F5408+(C10xF5):1C2400,118
(C10×F5)⋊2C2 = C5×C22⋊F5φ: C2/C1C2 ⊆ Out C10×F5404(C10xF5):2C2400,141
(C10×F5)⋊3C2 = C2×D5×F5φ: C2/C1C2 ⊆ Out C10×F5408+(C10xF5):3C2400,209

Non-split extensions G=N.Q with N=C10×F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10×F5).1C2 = D5.Dic10φ: C2/C1C2 ⊆ Out C10×F5808-(C10xF5).1C2400,119
(C10×F5).2C2 = C5×C4⋊F5φ: C2/C1C2 ⊆ Out C10×F5804(C10xF5).2C2400,138
(C10×F5).3C2 = Dic5×F5φ: C2/C1C2 ⊆ Out C10×F5808-(C10xF5).3C2400,117
(C10×F5).4C2 = C20×F5φ: trivial image804(C10xF5).4C2400,137

׿
×
𝔽