Copied to
clipboard

G = Dic5xF5order 400 = 24·52

Direct product of Dic5 and F5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: Dic5xF5, C52:2C42, D10.5D10, C5:6(C4xF5), (C5xF5):2C4, C2.1(D5xF5), D5.D5:2C4, D5.1(C4xD5), C5:1(C4xDic5), C10.1(C4xD5), D5.(C2xDic5), (C2xF5).2D5, C52:6C4:1C4, (C5xDic5):3C4, (C10xF5).3C2, C10.28(C2xF5), (D5xDic5).6C2, (D5xC10).5C22, (C5xC10).1(C2xC4), (C5xD5).2(C2xC4), (C2xD5.D5).1C2, SmallGroup(400,117)

Series: Derived Chief Lower central Upper central

C1C52 — Dic5xF5
C1C5C52C5xD5D5xC10C10xF5 — Dic5xF5
C52 — Dic5xF5
C1C2

Generators and relations for Dic5xF5
 G = < a,b,c,d | a10=c5=d4=1, b2=a5, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >

Subgroups: 336 in 63 conjugacy classes, 28 normal (22 characteristic)
C1, C2, C2, C4, C22, C5, C5, C2xC4, D5, C10, C10, C42, Dic5, Dic5, C20, F5, F5, D10, C2xC10, C52, C4xD5, C2xDic5, C2xC20, C2xF5, C2xF5, C5xD5, C5xC10, C4xDic5, C4xF5, C5xDic5, C52:6C4, C5xF5, D5.D5, D5xC10, D5xDic5, C10xF5, C2xD5.D5, Dic5xF5
Quotients: C1, C2, C4, C22, C2xC4, D5, C42, Dic5, F5, D10, C4xD5, C2xDic5, C2xF5, C4xDic5, C4xF5, D5xF5, Dic5xF5

Smallest permutation representation of Dic5xF5
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 24 6 29)(2 23 7 28)(3 22 8 27)(4 21 9 26)(5 30 10 25)(11 34 16 39)(12 33 17 38)(13 32 18 37)(14 31 19 36)(15 40 20 35)(41 64 46 69)(42 63 47 68)(43 62 48 67)(44 61 49 66)(45 70 50 65)(51 74 56 79)(52 73 57 78)(53 72 58 77)(54 71 59 76)(55 80 60 75)
(1 7 3 9 5)(2 8 4 10 6)(11 15 19 13 17)(12 16 20 14 18)(21 25 29 23 27)(22 26 30 24 28)(31 37 33 39 35)(32 38 34 40 36)(41 43 45 47 49)(42 44 46 48 50)(51 59 57 55 53)(52 60 58 56 54)(61 69 67 65 63)(62 70 68 66 64)(71 73 75 77 79)(72 74 76 78 80)
(1 51 11 41)(2 52 12 42)(3 53 13 43)(4 54 14 44)(5 55 15 45)(6 56 16 46)(7 57 17 47)(8 58 18 48)(9 59 19 49)(10 60 20 50)(21 71 31 61)(22 72 32 62)(23 73 33 63)(24 74 34 64)(25 75 35 65)(26 76 36 66)(27 77 37 67)(28 78 38 68)(29 79 39 69)(30 80 40 70)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,24,6,29)(2,23,7,28)(3,22,8,27)(4,21,9,26)(5,30,10,25)(11,34,16,39)(12,33,17,38)(13,32,18,37)(14,31,19,36)(15,40,20,35)(41,64,46,69)(42,63,47,68)(43,62,48,67)(44,61,49,66)(45,70,50,65)(51,74,56,79)(52,73,57,78)(53,72,58,77)(54,71,59,76)(55,80,60,75), (1,7,3,9,5)(2,8,4,10,6)(11,15,19,13,17)(12,16,20,14,18)(21,25,29,23,27)(22,26,30,24,28)(31,37,33,39,35)(32,38,34,40,36)(41,43,45,47,49)(42,44,46,48,50)(51,59,57,55,53)(52,60,58,56,54)(61,69,67,65,63)(62,70,68,66,64)(71,73,75,77,79)(72,74,76,78,80), (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,24,6,29)(2,23,7,28)(3,22,8,27)(4,21,9,26)(5,30,10,25)(11,34,16,39)(12,33,17,38)(13,32,18,37)(14,31,19,36)(15,40,20,35)(41,64,46,69)(42,63,47,68)(43,62,48,67)(44,61,49,66)(45,70,50,65)(51,74,56,79)(52,73,57,78)(53,72,58,77)(54,71,59,76)(55,80,60,75), (1,7,3,9,5)(2,8,4,10,6)(11,15,19,13,17)(12,16,20,14,18)(21,25,29,23,27)(22,26,30,24,28)(31,37,33,39,35)(32,38,34,40,36)(41,43,45,47,49)(42,44,46,48,50)(51,59,57,55,53)(52,60,58,56,54)(61,69,67,65,63)(62,70,68,66,64)(71,73,75,77,79)(72,74,76,78,80), (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,24,6,29),(2,23,7,28),(3,22,8,27),(4,21,9,26),(5,30,10,25),(11,34,16,39),(12,33,17,38),(13,32,18,37),(14,31,19,36),(15,40,20,35),(41,64,46,69),(42,63,47,68),(43,62,48,67),(44,61,49,66),(45,70,50,65),(51,74,56,79),(52,73,57,78),(53,72,58,77),(54,71,59,76),(55,80,60,75)], [(1,7,3,9,5),(2,8,4,10,6),(11,15,19,13,17),(12,16,20,14,18),(21,25,29,23,27),(22,26,30,24,28),(31,37,33,39,35),(32,38,34,40,36),(41,43,45,47,49),(42,44,46,48,50),(51,59,57,55,53),(52,60,58,56,54),(61,69,67,65,63),(62,70,68,66,64),(71,73,75,77,79),(72,74,76,78,80)], [(1,51,11,41),(2,52,12,42),(3,53,13,43),(4,54,14,44),(5,55,15,45),(6,56,16,46),(7,57,17,47),(8,58,18,48),(9,59,19,49),(10,60,20,50),(21,71,31,61),(22,72,32,62),(23,73,33,63),(24,74,34,64),(25,75,35,65),(26,76,36,66),(27,77,37,67),(28,78,38,68),(29,79,39,69),(30,80,40,70)]])

40 conjugacy classes

class 1 2A2B2C4A···4F4G···4L5A5B5C5D5E10A10B10C10D10E10F10G10H10I20A···20H20I20J
order12224···44···45555510101010101010101020···202020
size11555···525···2522488224881010101010···102020

40 irreducible representations

dim111111112222244488
type+++++-++++-
imageC1C2C2C2C4C4C4C4D5Dic5D10C4xD5C4xD5F5C2xF5C4xF5D5xF5Dic5xF5
kernelDic5xF5D5xDic5C10xF5C2xD5.D5C5xDic5C52:6C4C5xF5D5.D5C2xF5F5D10D5C10Dic5C10C5C2C1
# reps111122442424411222

Matrix representation of Dic5xF5 in GL6(F41)

3510000
4000000
001000
000100
000010
000001
,
090000
900000
001000
000100
000010
000001
,
100000
010000
0040100
0040001
0040000
0040010
,
100000
010000
000001
001000
000100
000010

G:=sub<GL(6,GF(41))| [35,40,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,9,0,0,0,0,9,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,40,40,40,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0] >;

Dic5xF5 in GAP, Magma, Sage, TeX

{\rm Dic}_5\times F_5
% in TeX

G:=Group("Dic5xF5");
// GroupNames label

G:=SmallGroup(400,117);
// by ID

G=gap.SmallGroup(400,117);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,55,970,5765,2897]);
// Polycyclic

G:=Group<a,b,c,d|a^10=c^5=d^4=1,b^2=a^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<