direct product, metabelian, supersoluble, monomial, A-group
Aliases: F5×C2×C10, D10⋊3C20, C102⋊5C4, C10⋊(C2×C20), D5⋊(C2×C20), C5⋊(C22×C20), (C2×C10)⋊2C20, (D5×C10)⋊10C4, D5.(C22×C10), C52⋊4(C22×C4), D10.7(C2×C10), (C5×D5).2C23, (C22×D5).3C10, (D5×C10).23C22, (C5×C10)⋊3(C2×C4), (C5×D5)⋊4(C2×C4), (D5×C2×C10).6C2, SmallGroup(400,214)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — F5×C2×C10 |
Generators and relations for F5×C2×C10
G = < a,b,c,d | a2=b10=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >
Subgroups: 304 in 113 conjugacy classes, 64 normal (14 characteristic)
C1, C2, C2, C4, C22, C22, C5, C5, C2×C4, C23, D5, D5, C10, C10, C22×C4, C20, F5, D10, C2×C10, C2×C10, C52, C2×C20, C2×F5, C22×D5, C22×C10, C5×D5, C5×D5, C5×C10, C22×C20, C22×F5, C5×F5, D5×C10, C102, C10×F5, D5×C2×C10, F5×C2×C10
Quotients: C1, C2, C4, C22, C5, C2×C4, C23, C10, C22×C4, C20, F5, C2×C10, C2×C20, C2×F5, C22×C10, C22×C20, C22×F5, C5×F5, C10×F5, F5×C2×C10
(1 40)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 37)(9 38)(10 39)(11 65)(12 66)(13 67)(14 68)(15 69)(16 70)(17 61)(18 62)(19 63)(20 64)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 3 5 7 9)(2 4 6 8 10)(11 17 13 19 15)(12 18 14 20 16)(21 29 27 25 23)(22 30 28 26 24)(31 33 35 37 39)(32 34 36 38 40)(41 49 47 45 43)(42 50 48 46 44)(51 55 59 53 57)(52 56 60 54 58)(61 67 63 69 65)(62 68 64 70 66)(71 75 79 73 77)(72 76 80 74 78)
(1 16 25 75)(2 17 26 76)(3 18 27 77)(4 19 28 78)(5 20 29 79)(6 11 30 80)(7 12 21 71)(8 13 22 72)(9 14 23 73)(10 15 24 74)(31 61 46 56)(32 62 47 57)(33 63 48 58)(34 64 49 59)(35 65 50 60)(36 66 41 51)(37 67 42 52)(38 68 43 53)(39 69 44 54)(40 70 45 55)
G:=sub<Sym(80)| (1,40)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,61)(18,62)(19,63)(20,64)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,3,5,7,9)(2,4,6,8,10)(11,17,13,19,15)(12,18,14,20,16)(21,29,27,25,23)(22,30,28,26,24)(31,33,35,37,39)(32,34,36,38,40)(41,49,47,45,43)(42,50,48,46,44)(51,55,59,53,57)(52,56,60,54,58)(61,67,63,69,65)(62,68,64,70,66)(71,75,79,73,77)(72,76,80,74,78), (1,16,25,75)(2,17,26,76)(3,18,27,77)(4,19,28,78)(5,20,29,79)(6,11,30,80)(7,12,21,71)(8,13,22,72)(9,14,23,73)(10,15,24,74)(31,61,46,56)(32,62,47,57)(33,63,48,58)(34,64,49,59)(35,65,50,60)(36,66,41,51)(37,67,42,52)(38,68,43,53)(39,69,44,54)(40,70,45,55)>;
G:=Group( (1,40)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,61)(18,62)(19,63)(20,64)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,3,5,7,9)(2,4,6,8,10)(11,17,13,19,15)(12,18,14,20,16)(21,29,27,25,23)(22,30,28,26,24)(31,33,35,37,39)(32,34,36,38,40)(41,49,47,45,43)(42,50,48,46,44)(51,55,59,53,57)(52,56,60,54,58)(61,67,63,69,65)(62,68,64,70,66)(71,75,79,73,77)(72,76,80,74,78), (1,16,25,75)(2,17,26,76)(3,18,27,77)(4,19,28,78)(5,20,29,79)(6,11,30,80)(7,12,21,71)(8,13,22,72)(9,14,23,73)(10,15,24,74)(31,61,46,56)(32,62,47,57)(33,63,48,58)(34,64,49,59)(35,65,50,60)(36,66,41,51)(37,67,42,52)(38,68,43,53)(39,69,44,54)(40,70,45,55) );
G=PermutationGroup([[(1,40),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,37),(9,38),(10,39),(11,65),(12,66),(13,67),(14,68),(15,69),(16,70),(17,61),(18,62),(19,63),(20,64),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,3,5,7,9),(2,4,6,8,10),(11,17,13,19,15),(12,18,14,20,16),(21,29,27,25,23),(22,30,28,26,24),(31,33,35,37,39),(32,34,36,38,40),(41,49,47,45,43),(42,50,48,46,44),(51,55,59,53,57),(52,56,60,54,58),(61,67,63,69,65),(62,68,64,70,66),(71,75,79,73,77),(72,76,80,74,78)], [(1,16,25,75),(2,17,26,76),(3,18,27,77),(4,19,28,78),(5,20,29,79),(6,11,30,80),(7,12,21,71),(8,13,22,72),(9,14,23,73),(10,15,24,74),(31,61,46,56),(32,62,47,57),(33,63,48,58),(34,64,49,59),(35,65,50,60),(36,66,41,51),(37,67,42,52),(38,68,43,53),(39,69,44,54),(40,70,45,55)]])
100 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4H | 5A | 5B | 5C | 5D | 5E | ··· | 5I | 10A | ··· | 10L | 10M | ··· | 10AA | 10AB | ··· | 10AQ | 20A | ··· | 20AF |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 5 | ··· | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 5 | ··· | 5 | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 1 | ··· | 1 | 4 | ··· | 4 | 5 | ··· | 5 | 5 | ··· | 5 |
100 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C4 | C4 | C5 | C10 | C10 | C20 | C20 | F5 | C2×F5 | C5×F5 | C10×F5 |
kernel | F5×C2×C10 | C10×F5 | D5×C2×C10 | D5×C10 | C102 | C22×F5 | C2×F5 | C22×D5 | D10 | C2×C10 | C2×C10 | C10 | C22 | C2 |
# reps | 1 | 6 | 1 | 6 | 2 | 4 | 24 | 4 | 24 | 8 | 1 | 3 | 4 | 12 |
Matrix representation of F5×C2×C10 ►in GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
31 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 |
0 | 17 | 18 | 0 | 0 |
0 | 10 | 0 | 10 | 0 |
0 | 6 | 0 | 0 | 37 |
32 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 24 | 0 |
0 | 0 | 0 | 1 | 40 |
0 | 0 | 40 | 40 | 0 |
0 | 0 | 0 | 40 | 0 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[31,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,16,17,10,6,0,0,18,0,0,0,0,0,10,0,0,0,0,0,37],[32,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,24,1,40,40,0,0,40,0,0] >;
F5×C2×C10 in GAP, Magma, Sage, TeX
F_5\times C_2\times C_{10}
% in TeX
G:=Group("F5xC2xC10");
// GroupNames label
G:=SmallGroup(400,214);
// by ID
G=gap.SmallGroup(400,214);
# by ID
G:=PCGroup([6,-2,-2,-2,-5,-2,-5,240,5765,317]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^10=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations