Copied to
clipboard

G = F5×C2×C10order 400 = 24·52

Direct product of C2×C10 and F5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: F5×C2×C10, D103C20, C1025C4, C10⋊(C2×C20), D5⋊(C2×C20), C5⋊(C22×C20), (C2×C10)⋊2C20, (D5×C10)⋊10C4, D5.(C22×C10), C524(C22×C4), D10.7(C2×C10), (C5×D5).2C23, (C22×D5).3C10, (D5×C10).23C22, (C5×C10)⋊3(C2×C4), (C5×D5)⋊4(C2×C4), (D5×C2×C10).6C2, SmallGroup(400,214)

Series: Derived Chief Lower central Upper central

C1C5 — F5×C2×C10
C1C5D5C5×D5C5×F5C10×F5 — F5×C2×C10
C5 — F5×C2×C10
C1C2×C10

Generators and relations for F5×C2×C10
 G = < a,b,c,d | a2=b10=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >

Subgroups: 304 in 113 conjugacy classes, 64 normal (14 characteristic)
C1, C2, C2, C4, C22, C22, C5, C5, C2×C4, C23, D5, D5, C10, C10, C22×C4, C20, F5, D10, C2×C10, C2×C10, C52, C2×C20, C2×F5, C22×D5, C22×C10, C5×D5, C5×D5, C5×C10, C22×C20, C22×F5, C5×F5, D5×C10, C102, C10×F5, D5×C2×C10, F5×C2×C10
Quotients: C1, C2, C4, C22, C5, C2×C4, C23, C10, C22×C4, C20, F5, C2×C10, C2×C20, C2×F5, C22×C10, C22×C20, C22×F5, C5×F5, C10×F5, F5×C2×C10

Smallest permutation representation of F5×C2×C10
On 80 points
Generators in S80
(1 40)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 37)(9 38)(10 39)(11 65)(12 66)(13 67)(14 68)(15 69)(16 70)(17 61)(18 62)(19 63)(20 64)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 3 5 7 9)(2 4 6 8 10)(11 17 13 19 15)(12 18 14 20 16)(21 29 27 25 23)(22 30 28 26 24)(31 33 35 37 39)(32 34 36 38 40)(41 49 47 45 43)(42 50 48 46 44)(51 55 59 53 57)(52 56 60 54 58)(61 67 63 69 65)(62 68 64 70 66)(71 75 79 73 77)(72 76 80 74 78)
(1 16 25 75)(2 17 26 76)(3 18 27 77)(4 19 28 78)(5 20 29 79)(6 11 30 80)(7 12 21 71)(8 13 22 72)(9 14 23 73)(10 15 24 74)(31 61 46 56)(32 62 47 57)(33 63 48 58)(34 64 49 59)(35 65 50 60)(36 66 41 51)(37 67 42 52)(38 68 43 53)(39 69 44 54)(40 70 45 55)

G:=sub<Sym(80)| (1,40)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,61)(18,62)(19,63)(20,64)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,3,5,7,9)(2,4,6,8,10)(11,17,13,19,15)(12,18,14,20,16)(21,29,27,25,23)(22,30,28,26,24)(31,33,35,37,39)(32,34,36,38,40)(41,49,47,45,43)(42,50,48,46,44)(51,55,59,53,57)(52,56,60,54,58)(61,67,63,69,65)(62,68,64,70,66)(71,75,79,73,77)(72,76,80,74,78), (1,16,25,75)(2,17,26,76)(3,18,27,77)(4,19,28,78)(5,20,29,79)(6,11,30,80)(7,12,21,71)(8,13,22,72)(9,14,23,73)(10,15,24,74)(31,61,46,56)(32,62,47,57)(33,63,48,58)(34,64,49,59)(35,65,50,60)(36,66,41,51)(37,67,42,52)(38,68,43,53)(39,69,44,54)(40,70,45,55)>;

G:=Group( (1,40)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,61)(18,62)(19,63)(20,64)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,3,5,7,9)(2,4,6,8,10)(11,17,13,19,15)(12,18,14,20,16)(21,29,27,25,23)(22,30,28,26,24)(31,33,35,37,39)(32,34,36,38,40)(41,49,47,45,43)(42,50,48,46,44)(51,55,59,53,57)(52,56,60,54,58)(61,67,63,69,65)(62,68,64,70,66)(71,75,79,73,77)(72,76,80,74,78), (1,16,25,75)(2,17,26,76)(3,18,27,77)(4,19,28,78)(5,20,29,79)(6,11,30,80)(7,12,21,71)(8,13,22,72)(9,14,23,73)(10,15,24,74)(31,61,46,56)(32,62,47,57)(33,63,48,58)(34,64,49,59)(35,65,50,60)(36,66,41,51)(37,67,42,52)(38,68,43,53)(39,69,44,54)(40,70,45,55) );

G=PermutationGroup([[(1,40),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,37),(9,38),(10,39),(11,65),(12,66),(13,67),(14,68),(15,69),(16,70),(17,61),(18,62),(19,63),(20,64),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,3,5,7,9),(2,4,6,8,10),(11,17,13,19,15),(12,18,14,20,16),(21,29,27,25,23),(22,30,28,26,24),(31,33,35,37,39),(32,34,36,38,40),(41,49,47,45,43),(42,50,48,46,44),(51,55,59,53,57),(52,56,60,54,58),(61,67,63,69,65),(62,68,64,70,66),(71,75,79,73,77),(72,76,80,74,78)], [(1,16,25,75),(2,17,26,76),(3,18,27,77),(4,19,28,78),(5,20,29,79),(6,11,30,80),(7,12,21,71),(8,13,22,72),(9,14,23,73),(10,15,24,74),(31,61,46,56),(32,62,47,57),(33,63,48,58),(34,64,49,59),(35,65,50,60),(36,66,41,51),(37,67,42,52),(38,68,43,53),(39,69,44,54),(40,70,45,55)]])

100 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4H5A5B5C5D5E···5I10A···10L10M···10AA10AB···10AQ20A···20AF
order122222224···455555···510···1010···1010···1020···20
size111155555···511114···41···14···45···55···5

100 irreducible representations

dim11111111114444
type+++++
imageC1C2C2C4C4C5C10C10C20C20F5C2×F5C5×F5C10×F5
kernelF5×C2×C10C10×F5D5×C2×C10D5×C10C102C22×F5C2×F5C22×D5D10C2×C10C2×C10C10C22C2
# reps16162424424813412

Matrix representation of F5×C2×C10 in GL5(𝔽41)

400000
01000
00100
00010
00001
,
310000
04000
00400
00040
00004
,
10000
016000
0171800
0100100
060037
,
320000
010240
000140
0040400
000400

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[31,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,16,17,10,6,0,0,18,0,0,0,0,0,10,0,0,0,0,0,37],[32,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,24,1,40,40,0,0,40,0,0] >;

F5×C2×C10 in GAP, Magma, Sage, TeX

F_5\times C_2\times C_{10}
% in TeX

G:=Group("F5xC2xC10");
// GroupNames label

G:=SmallGroup(400,214);
// by ID

G=gap.SmallGroup(400,214);
# by ID

G:=PCGroup([6,-2,-2,-2,-5,-2,-5,240,5765,317]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^10=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽