Copied to
clipboard

G = C10×F5order 200 = 23·52

Direct product of C10 and F5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C10×F5, C10⋊C20, D5⋊C20, D10.C10, C5⋊(C2×C20), (C5×C10)⋊1C4, (C5×D5)⋊3C4, D5.(C2×C10), C523(C2×C4), (D5×C10).2C2, (C5×D5).2C22, SmallGroup(200,45)

Series: Derived Chief Lower central Upper central

C1C5 — C10×F5
C1C5D5C5×D5C5×F5 — C10×F5
C5 — C10×F5
C1C10

Generators and relations for C10×F5
 G = < a,b,c | a10=b5=c4=1, ab=ba, ac=ca, cbc-1=b3 >

5C2
5C2
4C5
5C22
5C4
5C4
4C10
5C10
5C10
5C2×C4
5C20
5C20
5C2×C10
5C2×C20

Smallest permutation representation of C10×F5
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 3 5 7 9)(2 4 6 8 10)(11 17 13 19 15)(12 18 14 20 16)(21 29 27 25 23)(22 30 28 26 24)(31 35 39 33 37)(32 36 40 34 38)
(1 11 25 32)(2 12 26 33)(3 13 27 34)(4 14 28 35)(5 15 29 36)(6 16 30 37)(7 17 21 38)(8 18 22 39)(9 19 23 40)(10 20 24 31)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,3,5,7,9)(2,4,6,8,10)(11,17,13,19,15)(12,18,14,20,16)(21,29,27,25,23)(22,30,28,26,24)(31,35,39,33,37)(32,36,40,34,38), (1,11,25,32)(2,12,26,33)(3,13,27,34)(4,14,28,35)(5,15,29,36)(6,16,30,37)(7,17,21,38)(8,18,22,39)(9,19,23,40)(10,20,24,31)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,3,5,7,9)(2,4,6,8,10)(11,17,13,19,15)(12,18,14,20,16)(21,29,27,25,23)(22,30,28,26,24)(31,35,39,33,37)(32,36,40,34,38), (1,11,25,32)(2,12,26,33)(3,13,27,34)(4,14,28,35)(5,15,29,36)(6,16,30,37)(7,17,21,38)(8,18,22,39)(9,19,23,40)(10,20,24,31) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,3,5,7,9),(2,4,6,8,10),(11,17,13,19,15),(12,18,14,20,16),(21,29,27,25,23),(22,30,28,26,24),(31,35,39,33,37),(32,36,40,34,38)], [(1,11,25,32),(2,12,26,33),(3,13,27,34),(4,14,28,35),(5,15,29,36),(6,16,30,37),(7,17,21,38),(8,18,22,39),(9,19,23,40),(10,20,24,31)]])

C10×F5 is a maximal subgroup of   D5.D20  D5.Dic10

50 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B5C5D5E···5I10A10B10C10D10E···10I10J···10Q20A···20P
order1222444455555···51010101010···1010···1020···20
size1155555511114···411114···45···55···5

50 irreducible representations

dim11111111114444
type+++++
imageC1C2C2C4C4C5C10C10C20C20F5C2×F5C5×F5C10×F5
kernelC10×F5C5×F5D5×C10C5×D5C5×C10C2×F5F5D10D5C10C10C5C2C1
# reps12122484881144

Matrix representation of C10×F5 in GL5(𝔽41)

250000
016000
001600
000160
000016
,
10000
0100035
0037020
0001818
000016
,
400000
032010
09000
01100
09009

G:=sub<GL(5,GF(41))| [25,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,10,0,0,0,0,0,37,0,0,0,0,0,18,0,0,35,20,18,16],[40,0,0,0,0,0,32,9,1,9,0,0,0,1,0,0,1,0,0,0,0,0,0,0,9] >;

C10×F5 in GAP, Magma, Sage, TeX

C_{10}\times F_5
% in TeX

G:=Group("C10xF5");
// GroupNames label

G:=SmallGroup(200,45);
// by ID

G=gap.SmallGroup(200,45);
# by ID

G:=PCGroup([5,-2,-2,-5,-2,-5,100,2004,219]);
// Polycyclic

G:=Group<a,b,c|a^10=b^5=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C10×F5 in TeX

׿
×
𝔽