Extensions 1→N→G→Q→1 with N=C4×D25 and Q=C2

Direct product G=N×Q with N=C4×D25 and Q=C2
dρLabelID
C2×C4×D25200C2xC4xD25400,36

Semidirect products G=N:Q with N=C4×D25 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D25)⋊1C2 = D4×D25φ: C2/C1C2 ⊆ Out C4×D251004+(C4xD25):1C2400,39
(C4×D25)⋊2C2 = D42D25φ: C2/C1C2 ⊆ Out C4×D252004-(C4xD25):2C2400,40
(C4×D25)⋊3C2 = Q82D25φ: C2/C1C2 ⊆ Out C4×D252004+(C4xD25):3C2400,42
(C4×D25)⋊4C2 = D1005C2φ: C2/C1C2 ⊆ Out C4×D252002(C4xD25):4C2400,38

Non-split extensions G=N.Q with N=C4×D25 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D25).1C2 = Q8×D25φ: C2/C1C2 ⊆ Out C4×D252004-(C4xD25).1C2400,41
(C4×D25).2C2 = C8⋊D25φ: C2/C1C2 ⊆ Out C4×D252002(C4xD25).2C2400,6
(C4×D25).3C2 = C100.C4φ: C2/C1C2 ⊆ Out C4×D252004(C4xD25).3C2400,29
(C4×D25).4C2 = C100⋊C4φ: C2/C1C2 ⊆ Out C4×D251004(C4xD25).4C2400,31
(C4×D25).5C2 = D25⋊C8φ: C2/C1C2 ⊆ Out C4×D252004(C4xD25).5C2400,28
(C4×D25).6C2 = C4×C25⋊C4φ: C2/C1C2 ⊆ Out C4×D251004(C4xD25).6C2400,30
(C4×D25).7C2 = C8×D25φ: trivial image2002(C4xD25).7C2400,5

׿
×
𝔽