Copied to
clipboard

G = C100⋊C4order 400 = 24·52

1st semidirect product of C100 and C4 acting faithfully

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C1001C4, D25.Q8, C20.2F5, D25.1D4, Dic253C4, D50.5C22, C4⋊(C25⋊C4), C25⋊(C4⋊C4), C5.(C4⋊F5), C50.4(C2×C4), C10.9(C2×F5), (C4×D25).4C2, (C2×C25⋊C4).C2, C2.5(C2×C25⋊C4), SmallGroup(400,31)

Series: Derived Chief Lower central Upper central

C1C50 — C100⋊C4
C1C5C25D25D50C2×C25⋊C4 — C100⋊C4
C25C50 — C100⋊C4
C1C2C4

Generators and relations for C100⋊C4
 G = < a,b | a100=b4=1, bab-1=a43 >

25C2
25C2
25C4
25C22
50C4
50C4
5D5
5D5
25C2×C4
25C2×C4
25C2×C4
5Dic5
5D10
10F5
10F5
25C4⋊C4
5C4×D5
5C2×F5
5C2×F5
2C25⋊C4
2C25⋊C4
5C4⋊F5

Smallest permutation representation of C100⋊C4
On 100 points
Generators in S100
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(2 8 50 44)(3 15 99 87)(4 22 48 30)(5 29 97 73)(6 36 46 16)(7 43 95 59)(9 57 93 45)(10 64 42 88)(11 71 91 31)(12 78 40 74)(13 85 89 17)(14 92 38 60)(18 20 34 32)(19 27 83 75)(21 41 81 61)(23 55 79 47)(24 62 28 90)(25 69 77 33)(26 76)(35 39 67 63)(37 53 65 49)(52 58 100 94)(54 72 98 80)(56 86 96 66)(68 70 84 82)

G:=sub<Sym(100)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (2,8,50,44)(3,15,99,87)(4,22,48,30)(5,29,97,73)(6,36,46,16)(7,43,95,59)(9,57,93,45)(10,64,42,88)(11,71,91,31)(12,78,40,74)(13,85,89,17)(14,92,38,60)(18,20,34,32)(19,27,83,75)(21,41,81,61)(23,55,79,47)(24,62,28,90)(25,69,77,33)(26,76)(35,39,67,63)(37,53,65,49)(52,58,100,94)(54,72,98,80)(56,86,96,66)(68,70,84,82)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (2,8,50,44)(3,15,99,87)(4,22,48,30)(5,29,97,73)(6,36,46,16)(7,43,95,59)(9,57,93,45)(10,64,42,88)(11,71,91,31)(12,78,40,74)(13,85,89,17)(14,92,38,60)(18,20,34,32)(19,27,83,75)(21,41,81,61)(23,55,79,47)(24,62,28,90)(25,69,77,33)(26,76)(35,39,67,63)(37,53,65,49)(52,58,100,94)(54,72,98,80)(56,86,96,66)(68,70,84,82) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(2,8,50,44),(3,15,99,87),(4,22,48,30),(5,29,97,73),(6,36,46,16),(7,43,95,59),(9,57,93,45),(10,64,42,88),(11,71,91,31),(12,78,40,74),(13,85,89,17),(14,92,38,60),(18,20,34,32),(19,27,83,75),(21,41,81,61),(23,55,79,47),(24,62,28,90),(25,69,77,33),(26,76),(35,39,67,63),(37,53,65,49),(52,58,100,94),(54,72,98,80),(56,86,96,66),(68,70,84,82)]])

34 conjugacy classes

class 1 2A2B2C4A4B···4F 5  10 20A20B25A···25E50A···50E100A···100J
order122244···4510202025···2550···50100···100
size112525250···5044444···44···44···4

34 irreducible representations

dim1111122444444
type++++-++++
imageC1C2C2C4C4D4Q8F5C2×F5C4⋊F5C25⋊C4C2×C25⋊C4C100⋊C4
kernelC100⋊C4C4×D25C2×C25⋊C4Dic25C100D25D25C20C10C5C4C2C1
# reps11222111125510

Matrix representation of C100⋊C4 in GL4(𝔽7) generated by

5052
2212
1436
0322
,
3320
4136
3154
2445
G:=sub<GL(4,GF(7))| [5,2,1,0,0,2,4,3,5,1,3,2,2,2,6,2],[3,4,3,2,3,1,1,4,2,3,5,4,0,6,4,5] >;

C100⋊C4 in GAP, Magma, Sage, TeX

C_{100}\rtimes C_4
% in TeX

G:=Group("C100:C4");
// GroupNames label

G:=SmallGroup(400,31);
// by ID

G=gap.SmallGroup(400,31);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,121,55,3364,2896,178,5765,2897]);
// Polycyclic

G:=Group<a,b|a^100=b^4=1,b*a*b^-1=a^43>;
// generators/relations

Export

Subgroup lattice of C100⋊C4 in TeX

׿
×
𝔽