Copied to
clipboard

G = C4×C25⋊C4order 400 = 24·52

Direct product of C4 and C25⋊C4

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C4×C25⋊C4, C25⋊C42, C1002C4, C20.7F5, Dic252C4, D50.4C22, C5.(C4×F5), D25.(C2×C4), C50.3(C2×C4), C10.8(C2×F5), (C4×D25).6C2, C2.2(C2×C25⋊C4), (C2×C25⋊C4).2C2, SmallGroup(400,30)

Series: Derived Chief Lower central Upper central

C1C25 — C4×C25⋊C4
C1C5C25D25D50C2×C25⋊C4 — C4×C25⋊C4
C25 — C4×C25⋊C4
C1C4

Generators and relations for C4×C25⋊C4
 G = < a,b,c | a4=b25=c4=1, ab=ba, ac=ca, cbc-1=b18 >

25C2
25C2
25C4
25C4
25C4
25C22
25C4
25C4
5D5
5D5
25C2×C4
25C2×C4
25C2×C4
5F5
5F5
5Dic5
5F5
5D10
5F5
25C42
5C2×F5
5C4×D5
5C2×F5
5C4×F5

Smallest permutation representation of C4×C25⋊C4
On 100 points
Generators in S100
(1 97 26 63)(2 98 27 64)(3 99 28 65)(4 100 29 66)(5 76 30 67)(6 77 31 68)(7 78 32 69)(8 79 33 70)(9 80 34 71)(10 81 35 72)(11 82 36 73)(12 83 37 74)(13 84 38 75)(14 85 39 51)(15 86 40 52)(16 87 41 53)(17 88 42 54)(18 89 43 55)(19 90 44 56)(20 91 45 57)(21 92 46 58)(22 93 47 59)(23 94 48 60)(24 95 49 61)(25 96 50 62)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(1 97 26 63)(2 79 50 56)(3 86 49 74)(4 93 48 67)(5 100 47 60)(6 82 46 53)(7 89 45 71)(8 96 44 64)(9 78 43 57)(10 85 42 75)(11 92 41 68)(12 99 40 61)(13 81 39 54)(14 88 38 72)(15 95 37 65)(16 77 36 58)(17 84 35 51)(18 91 34 69)(19 98 33 62)(20 80 32 55)(21 87 31 73)(22 94 30 66)(23 76 29 59)(24 83 28 52)(25 90 27 70)

G:=sub<Sym(100)| (1,97,26,63)(2,98,27,64)(3,99,28,65)(4,100,29,66)(5,76,30,67)(6,77,31,68)(7,78,32,69)(8,79,33,70)(9,80,34,71)(10,81,35,72)(11,82,36,73)(12,83,37,74)(13,84,38,75)(14,85,39,51)(15,86,40,52)(16,87,41,53)(17,88,42,54)(18,89,43,55)(19,90,44,56)(20,91,45,57)(21,92,46,58)(22,93,47,59)(23,94,48,60)(24,95,49,61)(25,96,50,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,97,26,63)(2,79,50,56)(3,86,49,74)(4,93,48,67)(5,100,47,60)(6,82,46,53)(7,89,45,71)(8,96,44,64)(9,78,43,57)(10,85,42,75)(11,92,41,68)(12,99,40,61)(13,81,39,54)(14,88,38,72)(15,95,37,65)(16,77,36,58)(17,84,35,51)(18,91,34,69)(19,98,33,62)(20,80,32,55)(21,87,31,73)(22,94,30,66)(23,76,29,59)(24,83,28,52)(25,90,27,70)>;

G:=Group( (1,97,26,63)(2,98,27,64)(3,99,28,65)(4,100,29,66)(5,76,30,67)(6,77,31,68)(7,78,32,69)(8,79,33,70)(9,80,34,71)(10,81,35,72)(11,82,36,73)(12,83,37,74)(13,84,38,75)(14,85,39,51)(15,86,40,52)(16,87,41,53)(17,88,42,54)(18,89,43,55)(19,90,44,56)(20,91,45,57)(21,92,46,58)(22,93,47,59)(23,94,48,60)(24,95,49,61)(25,96,50,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,97,26,63)(2,79,50,56)(3,86,49,74)(4,93,48,67)(5,100,47,60)(6,82,46,53)(7,89,45,71)(8,96,44,64)(9,78,43,57)(10,85,42,75)(11,92,41,68)(12,99,40,61)(13,81,39,54)(14,88,38,72)(15,95,37,65)(16,77,36,58)(17,84,35,51)(18,91,34,69)(19,98,33,62)(20,80,32,55)(21,87,31,73)(22,94,30,66)(23,76,29,59)(24,83,28,52)(25,90,27,70) );

G=PermutationGroup([[(1,97,26,63),(2,98,27,64),(3,99,28,65),(4,100,29,66),(5,76,30,67),(6,77,31,68),(7,78,32,69),(8,79,33,70),(9,80,34,71),(10,81,35,72),(11,82,36,73),(12,83,37,74),(13,84,38,75),(14,85,39,51),(15,86,40,52),(16,87,41,53),(17,88,42,54),(18,89,43,55),(19,90,44,56),(20,91,45,57),(21,92,46,58),(22,93,47,59),(23,94,48,60),(24,95,49,61),(25,96,50,62)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(1,97,26,63),(2,79,50,56),(3,86,49,74),(4,93,48,67),(5,100,47,60),(6,82,46,53),(7,89,45,71),(8,96,44,64),(9,78,43,57),(10,85,42,75),(11,92,41,68),(12,99,40,61),(13,81,39,54),(14,88,38,72),(15,95,37,65),(16,77,36,58),(17,84,35,51),(18,91,34,69),(19,98,33,62),(20,80,32,55),(21,87,31,73),(22,94,30,66),(23,76,29,59),(24,83,28,52),(25,90,27,70)]])

40 conjugacy classes

class 1 2A2B2C4A4B4C···4L 5  10 20A20B25A···25E50A···50E100A···100J
order1222444···4510202025···2550···50100···100
size1125251125···2544444···44···44···4

40 irreducible representations

dim111111444444
type+++++++
imageC1C2C2C4C4C4F5C2×F5C4×F5C25⋊C4C2×C25⋊C4C4×C25⋊C4
kernelC4×C25⋊C4C4×D25C2×C25⋊C4Dic25C100C25⋊C4C20C10C5C4C2C1
# reps1122281125510

Matrix representation of C4×C25⋊C4 in GL5(𝔽101)

910000
01000
00100
00010
00001
,
10000
03583163
038734669
03270478
023559327
,
10000
01000
00001
00100
0100100100100

G:=sub<GL(5,GF(101))| [91,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,35,38,32,23,0,8,73,70,55,0,31,46,4,93,0,63,69,78,27],[1,0,0,0,0,0,1,0,0,100,0,0,0,1,100,0,0,0,0,100,0,0,1,0,100] >;

C4×C25⋊C4 in GAP, Magma, Sage, TeX

C_4\times C_{25}\rtimes C_4
% in TeX

G:=Group("C4xC25:C4");
// GroupNames label

G:=SmallGroup(400,30);
// by ID

G=gap.SmallGroup(400,30);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,55,3364,2896,178,5765,2897]);
// Polycyclic

G:=Group<a,b,c|a^4=b^25=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^18>;
// generators/relations

Export

Subgroup lattice of C4×C25⋊C4 in TeX

׿
×
𝔽