direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C4×C25⋊C4, C25⋊C42, C100⋊2C4, C20.7F5, Dic25⋊2C4, D50.4C22, C5.(C4×F5), D25.(C2×C4), C50.3(C2×C4), C10.8(C2×F5), (C4×D25).6C2, C2.2(C2×C25⋊C4), (C2×C25⋊C4).2C2, SmallGroup(400,30)
Series: Derived ►Chief ►Lower central ►Upper central
C25 — C4×C25⋊C4 |
Generators and relations for C4×C25⋊C4
G = < a,b,c | a4=b25=c4=1, ab=ba, ac=ca, cbc-1=b18 >
(1 97 26 63)(2 98 27 64)(3 99 28 65)(4 100 29 66)(5 76 30 67)(6 77 31 68)(7 78 32 69)(8 79 33 70)(9 80 34 71)(10 81 35 72)(11 82 36 73)(12 83 37 74)(13 84 38 75)(14 85 39 51)(15 86 40 52)(16 87 41 53)(17 88 42 54)(18 89 43 55)(19 90 44 56)(20 91 45 57)(21 92 46 58)(22 93 47 59)(23 94 48 60)(24 95 49 61)(25 96 50 62)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(1 97 26 63)(2 79 50 56)(3 86 49 74)(4 93 48 67)(5 100 47 60)(6 82 46 53)(7 89 45 71)(8 96 44 64)(9 78 43 57)(10 85 42 75)(11 92 41 68)(12 99 40 61)(13 81 39 54)(14 88 38 72)(15 95 37 65)(16 77 36 58)(17 84 35 51)(18 91 34 69)(19 98 33 62)(20 80 32 55)(21 87 31 73)(22 94 30 66)(23 76 29 59)(24 83 28 52)(25 90 27 70)
G:=sub<Sym(100)| (1,97,26,63)(2,98,27,64)(3,99,28,65)(4,100,29,66)(5,76,30,67)(6,77,31,68)(7,78,32,69)(8,79,33,70)(9,80,34,71)(10,81,35,72)(11,82,36,73)(12,83,37,74)(13,84,38,75)(14,85,39,51)(15,86,40,52)(16,87,41,53)(17,88,42,54)(18,89,43,55)(19,90,44,56)(20,91,45,57)(21,92,46,58)(22,93,47,59)(23,94,48,60)(24,95,49,61)(25,96,50,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,97,26,63)(2,79,50,56)(3,86,49,74)(4,93,48,67)(5,100,47,60)(6,82,46,53)(7,89,45,71)(8,96,44,64)(9,78,43,57)(10,85,42,75)(11,92,41,68)(12,99,40,61)(13,81,39,54)(14,88,38,72)(15,95,37,65)(16,77,36,58)(17,84,35,51)(18,91,34,69)(19,98,33,62)(20,80,32,55)(21,87,31,73)(22,94,30,66)(23,76,29,59)(24,83,28,52)(25,90,27,70)>;
G:=Group( (1,97,26,63)(2,98,27,64)(3,99,28,65)(4,100,29,66)(5,76,30,67)(6,77,31,68)(7,78,32,69)(8,79,33,70)(9,80,34,71)(10,81,35,72)(11,82,36,73)(12,83,37,74)(13,84,38,75)(14,85,39,51)(15,86,40,52)(16,87,41,53)(17,88,42,54)(18,89,43,55)(19,90,44,56)(20,91,45,57)(21,92,46,58)(22,93,47,59)(23,94,48,60)(24,95,49,61)(25,96,50,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,97,26,63)(2,79,50,56)(3,86,49,74)(4,93,48,67)(5,100,47,60)(6,82,46,53)(7,89,45,71)(8,96,44,64)(9,78,43,57)(10,85,42,75)(11,92,41,68)(12,99,40,61)(13,81,39,54)(14,88,38,72)(15,95,37,65)(16,77,36,58)(17,84,35,51)(18,91,34,69)(19,98,33,62)(20,80,32,55)(21,87,31,73)(22,94,30,66)(23,76,29,59)(24,83,28,52)(25,90,27,70) );
G=PermutationGroup([[(1,97,26,63),(2,98,27,64),(3,99,28,65),(4,100,29,66),(5,76,30,67),(6,77,31,68),(7,78,32,69),(8,79,33,70),(9,80,34,71),(10,81,35,72),(11,82,36,73),(12,83,37,74),(13,84,38,75),(14,85,39,51),(15,86,40,52),(16,87,41,53),(17,88,42,54),(18,89,43,55),(19,90,44,56),(20,91,45,57),(21,92,46,58),(22,93,47,59),(23,94,48,60),(24,95,49,61),(25,96,50,62)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(1,97,26,63),(2,79,50,56),(3,86,49,74),(4,93,48,67),(5,100,47,60),(6,82,46,53),(7,89,45,71),(8,96,44,64),(9,78,43,57),(10,85,42,75),(11,92,41,68),(12,99,40,61),(13,81,39,54),(14,88,38,72),(15,95,37,65),(16,77,36,58),(17,84,35,51),(18,91,34,69),(19,98,33,62),(20,80,32,55),(21,87,31,73),(22,94,30,66),(23,76,29,59),(24,83,28,52),(25,90,27,70)]])
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | ··· | 4L | 5 | 10 | 20A | 20B | 25A | ··· | 25E | 50A | ··· | 50E | 100A | ··· | 100J |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 5 | 10 | 20 | 20 | 25 | ··· | 25 | 50 | ··· | 50 | 100 | ··· | 100 |
size | 1 | 1 | 25 | 25 | 1 | 1 | 25 | ··· | 25 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C4 | C4 | C4 | F5 | C2×F5 | C4×F5 | C25⋊C4 | C2×C25⋊C4 | C4×C25⋊C4 |
kernel | C4×C25⋊C4 | C4×D25 | C2×C25⋊C4 | Dic25 | C100 | C25⋊C4 | C20 | C10 | C5 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 8 | 1 | 1 | 2 | 5 | 5 | 10 |
Matrix representation of C4×C25⋊C4 ►in GL5(𝔽101)
91 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 35 | 8 | 31 | 63 |
0 | 38 | 73 | 46 | 69 |
0 | 32 | 70 | 4 | 78 |
0 | 23 | 55 | 93 | 27 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
0 | 100 | 100 | 100 | 100 |
G:=sub<GL(5,GF(101))| [91,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,35,38,32,23,0,8,73,70,55,0,31,46,4,93,0,63,69,78,27],[1,0,0,0,0,0,1,0,0,100,0,0,0,1,100,0,0,0,0,100,0,0,1,0,100] >;
C4×C25⋊C4 in GAP, Magma, Sage, TeX
C_4\times C_{25}\rtimes C_4
% in TeX
G:=Group("C4xC25:C4");
// GroupNames label
G:=SmallGroup(400,30);
// by ID
G=gap.SmallGroup(400,30);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,55,3364,2896,178,5765,2897]);
// Polycyclic
G:=Group<a,b,c|a^4=b^25=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^18>;
// generators/relations
Export