Copied to
clipboard

G = A4×D17order 408 = 23·3·17

Direct product of A4 and D17

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×D17, C17⋊(C2×A4), (C2×C34)⋊C6, (C22×D17)⋊C3, C22⋊(C3×D17), (A4×C17)⋊2C2, SmallGroup(408,38)

Series: Derived Chief Lower central Upper central

C1C2×C34 — A4×D17
C1C17C2×C34A4×C17 — A4×D17
C2×C34 — A4×D17
C1

Generators and relations for A4×D17
 G = < a,b,c,d,e | a2=b2=c3=d17=e2=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

3C2
17C2
51C2
4C3
51C22
51C22
68C6
3C34
3D17
4C51
17C23
3D34
3D34
4C3×D17
17C2×A4

Smallest permutation representation of A4×D17
On 68 points
Generators in S68
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 33)(17 34)(35 66)(36 67)(37 68)(38 52)(39 53)(40 54)(41 55)(42 56)(43 57)(44 58)(45 59)(46 60)(47 61)(48 62)(49 63)(50 64)(51 65)
(1 42)(2 43)(3 44)(4 45)(5 46)(6 47)(7 48)(8 49)(9 50)(10 51)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 41)(18 56)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(25 63)(26 64)(27 65)(28 66)(29 67)(30 68)(31 52)(32 53)(33 54)(34 55)
(18 42 56)(19 43 57)(20 44 58)(21 45 59)(22 46 60)(23 47 61)(24 48 62)(25 49 63)(26 50 64)(27 51 65)(28 35 66)(29 36 67)(30 37 68)(31 38 52)(32 39 53)(33 40 54)(34 41 55)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)
(1 17)(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(18 34)(19 33)(20 32)(21 31)(22 30)(23 29)(24 28)(25 27)(35 48)(36 47)(37 46)(38 45)(39 44)(40 43)(41 42)(49 51)(52 59)(53 58)(54 57)(55 56)(60 68)(61 67)(62 66)(63 65)

G:=sub<Sym(68)| (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(35,66)(36,67)(37,68)(38,52)(39,53)(40,54)(41,55)(42,56)(43,57)(44,58)(45,59)(46,60)(47,61)(48,62)(49,63)(50,64)(51,65), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,52)(32,53)(33,54)(34,55), (18,42,56)(19,43,57)(20,44,58)(21,45,59)(22,46,60)(23,47,61)(24,48,62)(25,49,63)(26,50,64)(27,51,65)(28,35,66)(29,36,67)(30,37,68)(31,38,52)(32,39,53)(33,40,54)(34,41,55), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28)(25,27)(35,48)(36,47)(37,46)(38,45)(39,44)(40,43)(41,42)(49,51)(52,59)(53,58)(54,57)(55,56)(60,68)(61,67)(62,66)(63,65)>;

G:=Group( (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(35,66)(36,67)(37,68)(38,52)(39,53)(40,54)(41,55)(42,56)(43,57)(44,58)(45,59)(46,60)(47,61)(48,62)(49,63)(50,64)(51,65), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,52)(32,53)(33,54)(34,55), (18,42,56)(19,43,57)(20,44,58)(21,45,59)(22,46,60)(23,47,61)(24,48,62)(25,49,63)(26,50,64)(27,51,65)(28,35,66)(29,36,67)(30,37,68)(31,38,52)(32,39,53)(33,40,54)(34,41,55), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28)(25,27)(35,48)(36,47)(37,46)(38,45)(39,44)(40,43)(41,42)(49,51)(52,59)(53,58)(54,57)(55,56)(60,68)(61,67)(62,66)(63,65) );

G=PermutationGroup([[(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,33),(17,34),(35,66),(36,67),(37,68),(38,52),(39,53),(40,54),(41,55),(42,56),(43,57),(44,58),(45,59),(46,60),(47,61),(48,62),(49,63),(50,64),(51,65)], [(1,42),(2,43),(3,44),(4,45),(5,46),(6,47),(7,48),(8,49),(9,50),(10,51),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,41),(18,56),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(25,63),(26,64),(27,65),(28,66),(29,67),(30,68),(31,52),(32,53),(33,54),(34,55)], [(18,42,56),(19,43,57),(20,44,58),(21,45,59),(22,46,60),(23,47,61),(24,48,62),(25,49,63),(26,50,64),(27,51,65),(28,35,66),(29,36,67),(30,37,68),(31,38,52),(32,39,53),(33,40,54),(34,41,55)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)], [(1,17),(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(18,34),(19,33),(20,32),(21,31),(22,30),(23,29),(24,28),(25,27),(35,48),(36,47),(37,46),(38,45),(39,44),(40,43),(41,42),(49,51),(52,59),(53,58),(54,57),(55,56),(60,68),(61,67),(62,66),(63,65)]])

40 conjugacy classes

class 1 2A2B2C3A3B6A6B17A···17H34A···34H51A···51P
order1222336617···1734···3451···51
size1317514468682···26···68···8

40 irreducible representations

dim111122336
type++++++
imageC1C2C3C6D17C3×D17A4C2×A4A4×D17
kernelA4×D17A4×C17C22×D17C2×C34A4C22D17C17C1
# reps1122816118

Matrix representation of A4×D17 in GL5(𝔽103)

10000
01000
00010
00100
00102102102
,
10000
01000
00001
00102102102
00100
,
460000
046000
00100
00102102102
00010
,
341000
1020000
00100
00010
00001
,
01000
10000
00100
00010
00001

G:=sub<GL(5,GF(103))| [1,0,0,0,0,0,1,0,0,0,0,0,0,1,102,0,0,1,0,102,0,0,0,0,102],[1,0,0,0,0,0,1,0,0,0,0,0,0,102,1,0,0,0,102,0,0,0,1,102,0],[46,0,0,0,0,0,46,0,0,0,0,0,1,102,0,0,0,0,102,1,0,0,0,102,0],[34,102,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;

A4×D17 in GAP, Magma, Sage, TeX

A_4\times D_{17}
% in TeX

G:=Group("A4xD17");
// GroupNames label

G:=SmallGroup(408,38);
// by ID

G=gap.SmallGroup(408,38);
# by ID

G:=PCGroup([5,-2,-3,-2,2,-17,142,68,9604]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^17=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of A4×D17 in TeX

׿
×
𝔽