metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D203, C29⋊D7, C7⋊D29, C203⋊1C2, sometimes denoted D406 or Dih203 or Dih406, SmallGroup(406,5)
Series: Derived ►Chief ►Lower central ►Upper central
| C203 — D203 |
Generators and relations for D203
G = < a,b | a203=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203)
(1 203)(2 202)(3 201)(4 200)(5 199)(6 198)(7 197)(8 196)(9 195)(10 194)(11 193)(12 192)(13 191)(14 190)(15 189)(16 188)(17 187)(18 186)(19 185)(20 184)(21 183)(22 182)(23 181)(24 180)(25 179)(26 178)(27 177)(28 176)(29 175)(30 174)(31 173)(32 172)(33 171)(34 170)(35 169)(36 168)(37 167)(38 166)(39 165)(40 164)(41 163)(42 162)(43 161)(44 160)(45 159)(46 158)(47 157)(48 156)(49 155)(50 154)(51 153)(52 152)(53 151)(54 150)(55 149)(56 148)(57 147)(58 146)(59 145)(60 144)(61 143)(62 142)(63 141)(64 140)(65 139)(66 138)(67 137)(68 136)(69 135)(70 134)(71 133)(72 132)(73 131)(74 130)(75 129)(76 128)(77 127)(78 126)(79 125)(80 124)(81 123)(82 122)(83 121)(84 120)(85 119)(86 118)(87 117)(88 116)(89 115)(90 114)(91 113)(92 112)(93 111)(94 110)(95 109)(96 108)(97 107)(98 106)(99 105)(100 104)(101 103)
G:=sub<Sym(203)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203), (1,203)(2,202)(3,201)(4,200)(5,199)(6,198)(7,197)(8,196)(9,195)(10,194)(11,193)(12,192)(13,191)(14,190)(15,189)(16,188)(17,187)(18,186)(19,185)(20,184)(21,183)(22,182)(23,181)(24,180)(25,179)(26,178)(27,177)(28,176)(29,175)(30,174)(31,173)(32,172)(33,171)(34,170)(35,169)(36,168)(37,167)(38,166)(39,165)(40,164)(41,163)(42,162)(43,161)(44,160)(45,159)(46,158)(47,157)(48,156)(49,155)(50,154)(51,153)(52,152)(53,151)(54,150)(55,149)(56,148)(57,147)(58,146)(59,145)(60,144)(61,143)(62,142)(63,141)(64,140)(65,139)(66,138)(67,137)(68,136)(69,135)(70,134)(71,133)(72,132)(73,131)(74,130)(75,129)(76,128)(77,127)(78,126)(79,125)(80,124)(81,123)(82,122)(83,121)(84,120)(85,119)(86,118)(87,117)(88,116)(89,115)(90,114)(91,113)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203), (1,203)(2,202)(3,201)(4,200)(5,199)(6,198)(7,197)(8,196)(9,195)(10,194)(11,193)(12,192)(13,191)(14,190)(15,189)(16,188)(17,187)(18,186)(19,185)(20,184)(21,183)(22,182)(23,181)(24,180)(25,179)(26,178)(27,177)(28,176)(29,175)(30,174)(31,173)(32,172)(33,171)(34,170)(35,169)(36,168)(37,167)(38,166)(39,165)(40,164)(41,163)(42,162)(43,161)(44,160)(45,159)(46,158)(47,157)(48,156)(49,155)(50,154)(51,153)(52,152)(53,151)(54,150)(55,149)(56,148)(57,147)(58,146)(59,145)(60,144)(61,143)(62,142)(63,141)(64,140)(65,139)(66,138)(67,137)(68,136)(69,135)(70,134)(71,133)(72,132)(73,131)(74,130)(75,129)(76,128)(77,127)(78,126)(79,125)(80,124)(81,123)(82,122)(83,121)(84,120)(85,119)(86,118)(87,117)(88,116)(89,115)(90,114)(91,113)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203)], [(1,203),(2,202),(3,201),(4,200),(5,199),(6,198),(7,197),(8,196),(9,195),(10,194),(11,193),(12,192),(13,191),(14,190),(15,189),(16,188),(17,187),(18,186),(19,185),(20,184),(21,183),(22,182),(23,181),(24,180),(25,179),(26,178),(27,177),(28,176),(29,175),(30,174),(31,173),(32,172),(33,171),(34,170),(35,169),(36,168),(37,167),(38,166),(39,165),(40,164),(41,163),(42,162),(43,161),(44,160),(45,159),(46,158),(47,157),(48,156),(49,155),(50,154),(51,153),(52,152),(53,151),(54,150),(55,149),(56,148),(57,147),(58,146),(59,145),(60,144),(61,143),(62,142),(63,141),(64,140),(65,139),(66,138),(67,137),(68,136),(69,135),(70,134),(71,133),(72,132),(73,131),(74,130),(75,129),(76,128),(77,127),(78,126),(79,125),(80,124),(81,123),(82,122),(83,121),(84,120),(85,119),(86,118),(87,117),(88,116),(89,115),(90,114),(91,113),(92,112),(93,111),(94,110),(95,109),(96,108),(97,107),(98,106),(99,105),(100,104),(101,103)]])
103 conjugacy classes
| class | 1 | 2 | 7A | 7B | 7C | 29A | ··· | 29N | 203A | ··· | 203CF |
| order | 1 | 2 | 7 | 7 | 7 | 29 | ··· | 29 | 203 | ··· | 203 |
| size | 1 | 203 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
103 irreducible representations
| dim | 1 | 1 | 2 | 2 | 2 |
| type | + | + | + | + | + |
| image | C1 | C2 | D7 | D29 | D203 |
| kernel | D203 | C203 | C29 | C7 | C1 |
| # reps | 1 | 1 | 3 | 14 | 84 |
Matrix representation of D203 ►in GL2(𝔽2437) generated by
| 757 | 1833 |
| 604 | 1675 |
| 757 | 1833 |
| 513 | 1680 |
G:=sub<GL(2,GF(2437))| [757,604,1833,1675],[757,513,1833,1680] >;
D203 in GAP, Magma, Sage, TeX
D_{203} % in TeX
G:=Group("D203"); // GroupNames label
G:=SmallGroup(406,5);
// by ID
G=gap.SmallGroup(406,5);
# by ID
G:=PCGroup([3,-2,-7,-29,73,3530]);
// Polycyclic
G:=Group<a,b|a^203=b^2=1,b*a*b=a^-1>;
// generators/relations
Export