Copied to
clipboard

G = D209order 418 = 2·11·19

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D209, C19⋊D11, C11⋊D19, C2091C2, sometimes denoted D418 or Dih209 or Dih418, SmallGroup(418,3)

Series: Derived Chief Lower central Upper central

C1C209 — D209
C1C19C209 — D209
C209 — D209
C1

Generators and relations for D209
 G = < a,b | a209=b2=1, bab=a-1 >

209C2
19D11
11D19

Smallest permutation representation of D209
On 209 points
Generators in S209
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209)
(1 209)(2 208)(3 207)(4 206)(5 205)(6 204)(7 203)(8 202)(9 201)(10 200)(11 199)(12 198)(13 197)(14 196)(15 195)(16 194)(17 193)(18 192)(19 191)(20 190)(21 189)(22 188)(23 187)(24 186)(25 185)(26 184)(27 183)(28 182)(29 181)(30 180)(31 179)(32 178)(33 177)(34 176)(35 175)(36 174)(37 173)(38 172)(39 171)(40 170)(41 169)(42 168)(43 167)(44 166)(45 165)(46 164)(47 163)(48 162)(49 161)(50 160)(51 159)(52 158)(53 157)(54 156)(55 155)(56 154)(57 153)(58 152)(59 151)(60 150)(61 149)(62 148)(63 147)(64 146)(65 145)(66 144)(67 143)(68 142)(69 141)(70 140)(71 139)(72 138)(73 137)(74 136)(75 135)(76 134)(77 133)(78 132)(79 131)(80 130)(81 129)(82 128)(83 127)(84 126)(85 125)(86 124)(87 123)(88 122)(89 121)(90 120)(91 119)(92 118)(93 117)(94 116)(95 115)(96 114)(97 113)(98 112)(99 111)(100 110)(101 109)(102 108)(103 107)(104 106)

G:=sub<Sym(209)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209), (1,209)(2,208)(3,207)(4,206)(5,205)(6,204)(7,203)(8,202)(9,201)(10,200)(11,199)(12,198)(13,197)(14,196)(15,195)(16,194)(17,193)(18,192)(19,191)(20,190)(21,189)(22,188)(23,187)(24,186)(25,185)(26,184)(27,183)(28,182)(29,181)(30,180)(31,179)(32,178)(33,177)(34,176)(35,175)(36,174)(37,173)(38,172)(39,171)(40,170)(41,169)(42,168)(43,167)(44,166)(45,165)(46,164)(47,163)(48,162)(49,161)(50,160)(51,159)(52,158)(53,157)(54,156)(55,155)(56,154)(57,153)(58,152)(59,151)(60,150)(61,149)(62,148)(63,147)(64,146)(65,145)(66,144)(67,143)(68,142)(69,141)(70,140)(71,139)(72,138)(73,137)(74,136)(75,135)(76,134)(77,133)(78,132)(79,131)(80,130)(81,129)(82,128)(83,127)(84,126)(85,125)(86,124)(87,123)(88,122)(89,121)(90,120)(91,119)(92,118)(93,117)(94,116)(95,115)(96,114)(97,113)(98,112)(99,111)(100,110)(101,109)(102,108)(103,107)(104,106)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209), (1,209)(2,208)(3,207)(4,206)(5,205)(6,204)(7,203)(8,202)(9,201)(10,200)(11,199)(12,198)(13,197)(14,196)(15,195)(16,194)(17,193)(18,192)(19,191)(20,190)(21,189)(22,188)(23,187)(24,186)(25,185)(26,184)(27,183)(28,182)(29,181)(30,180)(31,179)(32,178)(33,177)(34,176)(35,175)(36,174)(37,173)(38,172)(39,171)(40,170)(41,169)(42,168)(43,167)(44,166)(45,165)(46,164)(47,163)(48,162)(49,161)(50,160)(51,159)(52,158)(53,157)(54,156)(55,155)(56,154)(57,153)(58,152)(59,151)(60,150)(61,149)(62,148)(63,147)(64,146)(65,145)(66,144)(67,143)(68,142)(69,141)(70,140)(71,139)(72,138)(73,137)(74,136)(75,135)(76,134)(77,133)(78,132)(79,131)(80,130)(81,129)(82,128)(83,127)(84,126)(85,125)(86,124)(87,123)(88,122)(89,121)(90,120)(91,119)(92,118)(93,117)(94,116)(95,115)(96,114)(97,113)(98,112)(99,111)(100,110)(101,109)(102,108)(103,107)(104,106) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209)], [(1,209),(2,208),(3,207),(4,206),(5,205),(6,204),(7,203),(8,202),(9,201),(10,200),(11,199),(12,198),(13,197),(14,196),(15,195),(16,194),(17,193),(18,192),(19,191),(20,190),(21,189),(22,188),(23,187),(24,186),(25,185),(26,184),(27,183),(28,182),(29,181),(30,180),(31,179),(32,178),(33,177),(34,176),(35,175),(36,174),(37,173),(38,172),(39,171),(40,170),(41,169),(42,168),(43,167),(44,166),(45,165),(46,164),(47,163),(48,162),(49,161),(50,160),(51,159),(52,158),(53,157),(54,156),(55,155),(56,154),(57,153),(58,152),(59,151),(60,150),(61,149),(62,148),(63,147),(64,146),(65,145),(66,144),(67,143),(68,142),(69,141),(70,140),(71,139),(72,138),(73,137),(74,136),(75,135),(76,134),(77,133),(78,132),(79,131),(80,130),(81,129),(82,128),(83,127),(84,126),(85,125),(86,124),(87,123),(88,122),(89,121),(90,120),(91,119),(92,118),(93,117),(94,116),(95,115),(96,114),(97,113),(98,112),(99,111),(100,110),(101,109),(102,108),(103,107),(104,106)]])

106 conjugacy classes

class 1  2 11A···11E19A···19I209A···209CL
order1211···1119···19209···209
size12092···22···22···2

106 irreducible representations

dim11222
type+++++
imageC1C2D11D19D209
kernelD209C209C19C11C1
# reps115990

Matrix representation of D209 in GL2(𝔽419) generated by

373243
400155
,
134172
395285
G:=sub<GL(2,GF(419))| [373,400,243,155],[134,395,172,285] >;

D209 in GAP, Magma, Sage, TeX

D_{209}
% in TeX

G:=Group("D209");
// GroupNames label

G:=SmallGroup(418,3);
// by ID

G=gap.SmallGroup(418,3);
# by ID

G:=PCGroup([3,-2,-11,-19,121,3566]);
// Polycyclic

G:=Group<a,b|a^209=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D209 in TeX

׿
×
𝔽