Copied to
clipboard

G = C6.F9order 432 = 24·33

3rd non-split extension by C6 of F9 acting via F9/C32⋊C4=C2

metabelian, soluble, monomial, A-group

Aliases: C6.3F9, C332C16, C2.(C3⋊F9), C3⋊(C2.F9), C32⋊(C3⋊C16), (C32×C6).2C8, C322C8.1S3, C3⋊Dic3.3Dic3, (C3×C6).(C3⋊C8), (C3×C3⋊Dic3).2C4, (C3×C322C8).4C2, SmallGroup(432,566)

Series: Derived Chief Lower central Upper central

C1C33 — C6.F9
C1C3C33C32×C6C3×C3⋊Dic3C3×C322C8 — C6.F9
C33 — C6.F9
C1C2

Generators and relations for C6.F9
 G = < a,b,c,d | a6=b3=c3=1, d8=a3, ab=ba, ac=ca, dad-1=a-1, dbd-1=bc=cb, dcd-1=b >

4C3
8C3
9C4
4C6
8C6
4C32
8C32
9C8
9C12
12Dic3
4C3×C6
8C3×C6
27C16
9C24
12C3×Dic3
9C3⋊C16
3C2.F9

Character table of C6.F9

 class 123A3B3C3D4A4B6A6B6C6D8A8B8C8D12A12B16A16B16C16D16E16F16G16H24A24B24C24D
 size 11288899288899991818272727272727272718181818
ρ1111111111111111111111111111111    trivial
ρ2111111111111111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ3111111111111-1-1-1-111-iiii-i-i-ii-1-1-1-1    linear of order 4
ρ4111111111111-1-1-1-111i-i-i-iiii-i-1-1-1-1    linear of order 4
ρ5111111-1-11111i-i-ii-1-1ζ8ζ87ζ83ζ83ζ85ζ85ζ8ζ87-ii-ii    linear of order 8
ρ6111111-1-11111-iii-i-1-1ζ87ζ8ζ85ζ85ζ83ζ83ζ87ζ8i-ii-i    linear of order 8
ρ7111111-1-11111i-i-ii-1-1ζ85ζ83ζ87ζ87ζ8ζ8ζ85ζ83-ii-ii    linear of order 8
ρ8111111-1-11111-iii-i-1-1ζ83ζ85ζ8ζ8ζ87ζ87ζ83ζ85i-ii-i    linear of order 8
ρ91-11111i-i-1-1-1-1ζ162ζ1614ζ166ζ1610i-iζ169ζ1615ζ163ζ1611ζ165ζ1613ζ16ζ167ζ1614ζ1610ζ166ζ162    linear of order 16
ρ101-11111-ii-1-1-1-1ζ166ζ1610ζ162ζ1614-iiζ1611ζ1613ζ169ζ16ζ1615ζ167ζ163ζ165ζ1610ζ1614ζ162ζ166    linear of order 16
ρ111-11111i-i-1-1-1-1ζ1610ζ166ζ1614ζ162i-iζ1613ζ1611ζ1615ζ167ζ169ζ16ζ165ζ163ζ166ζ162ζ1614ζ1610    linear of order 16
ρ121-11111-ii-1-1-1-1ζ1614ζ162ζ1610ζ166-iiζ1615ζ169ζ165ζ1613ζ163ζ1611ζ167ζ16ζ162ζ166ζ1610ζ1614    linear of order 16
ρ131-11111-ii-1-1-1-1ζ1614ζ162ζ1610ζ166-iiζ167ζ16ζ1613ζ165ζ1611ζ163ζ1615ζ169ζ162ζ166ζ1610ζ1614    linear of order 16
ρ141-11111i-i-1-1-1-1ζ1610ζ166ζ1614ζ162i-iζ165ζ163ζ167ζ1615ζ16ζ169ζ1613ζ1611ζ166ζ162ζ1614ζ1610    linear of order 16
ρ151-11111-ii-1-1-1-1ζ166ζ1610ζ162ζ1614-iiζ163ζ165ζ16ζ169ζ167ζ1615ζ1611ζ1613ζ1610ζ1614ζ162ζ166    linear of order 16
ρ161-11111i-i-1-1-1-1ζ162ζ1614ζ166ζ1610i-iζ16ζ167ζ1611ζ163ζ1613ζ165ζ169ζ1615ζ1614ζ1610ζ166ζ162    linear of order 16
ρ1722-1-1-1222-1-1-122222-1-100000000-1-1-1-1    orthogonal lifted from S3
ρ1822-1-1-1222-1-1-12-2-2-2-2-1-1000000001111    symplectic lifted from Dic3, Schur index 2
ρ1922-1-1-12-2-2-1-1-122i-2i-2i2i1100000000i-ii-i    complex lifted from C3⋊C8
ρ2022-1-1-12-2-2-1-1-12-2i2i2i-2i1100000000-ii-ii    complex lifted from C3⋊C8
ρ212-2-1-1-122i-2i111-28583878-ii00000000ζ87ζ85ζ83ζ8    complex lifted from C3⋊C16, Schur index 2
ρ222-2-1-1-122i-2i111-28878385-ii00000000ζ83ζ8ζ87ζ85    complex lifted from C3⋊C16, Schur index 2
ρ232-2-1-1-12-2i2i111-28788583i-i00000000ζ85ζ87ζ8ζ83    complex lifted from C3⋊C16, Schur index 2
ρ242-2-1-1-12-2i2i111-28385887i-i00000000ζ8ζ83ζ85ζ87    complex lifted from C3⋊C16, Schur index 2
ρ25888-1-1-1008-1-1-1000000000000000000    orthogonal lifted from F9
ρ268-88-1-1-100-8111000000000000000000    symplectic lifted from C2.F9, Schur index 2
ρ2788-41+3-3/21-3-3/2-100-41-3-3/21+3-3/2-1000000000000000000    complex lifted from C3⋊F9
ρ288-8-41-3-3/21+3-3/2-1004-1-3-3/2-1+3-3/21000000000000000000    complex faithful
ρ298-8-41+3-3/21-3-3/2-1004-1+3-3/2-1-3-3/21000000000000000000    complex faithful
ρ3088-41-3-3/21+3-3/2-100-41+3-3/21-3-3/2-1000000000000000000    complex lifted from C3⋊F9

Smallest permutation representation of C6.F9
On 48 points
Generators in S48
(1 23 35 9 31 43)(2 44 32 10 36 24)(3 25 37 11 17 45)(4 46 18 12 38 26)(5 27 39 13 19 47)(6 48 20 14 40 28)(7 29 41 15 21 33)(8 34 22 16 42 30)
(2 32 36)(3 17 37)(4 38 18)(6 40 20)(7 41 21)(8 22 42)(10 24 44)(11 25 45)(12 46 26)(14 48 28)(15 33 29)(16 30 34)
(1 31 35)(3 17 37)(4 18 38)(5 39 19)(7 41 21)(8 42 22)(9 23 43)(11 25 45)(12 26 46)(13 47 27)(15 33 29)(16 34 30)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,23,35,9,31,43)(2,44,32,10,36,24)(3,25,37,11,17,45)(4,46,18,12,38,26)(5,27,39,13,19,47)(6,48,20,14,40,28)(7,29,41,15,21,33)(8,34,22,16,42,30), (2,32,36)(3,17,37)(4,38,18)(6,40,20)(7,41,21)(8,22,42)(10,24,44)(11,25,45)(12,46,26)(14,48,28)(15,33,29)(16,30,34), (1,31,35)(3,17,37)(4,18,38)(5,39,19)(7,41,21)(8,42,22)(9,23,43)(11,25,45)(12,26,46)(13,47,27)(15,33,29)(16,34,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)>;

G:=Group( (1,23,35,9,31,43)(2,44,32,10,36,24)(3,25,37,11,17,45)(4,46,18,12,38,26)(5,27,39,13,19,47)(6,48,20,14,40,28)(7,29,41,15,21,33)(8,34,22,16,42,30), (2,32,36)(3,17,37)(4,38,18)(6,40,20)(7,41,21)(8,22,42)(10,24,44)(11,25,45)(12,46,26)(14,48,28)(15,33,29)(16,30,34), (1,31,35)(3,17,37)(4,18,38)(5,39,19)(7,41,21)(8,42,22)(9,23,43)(11,25,45)(12,26,46)(13,47,27)(15,33,29)(16,34,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,23,35,9,31,43),(2,44,32,10,36,24),(3,25,37,11,17,45),(4,46,18,12,38,26),(5,27,39,13,19,47),(6,48,20,14,40,28),(7,29,41,15,21,33),(8,34,22,16,42,30)], [(2,32,36),(3,17,37),(4,38,18),(6,40,20),(7,41,21),(8,22,42),(10,24,44),(11,25,45),(12,46,26),(14,48,28),(15,33,29),(16,30,34)], [(1,31,35),(3,17,37),(4,18,38),(5,39,19),(7,41,21),(8,42,22),(9,23,43),(11,25,45),(12,26,46),(13,47,27),(15,33,29),(16,34,30)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)]])

Matrix representation of C6.F9 in GL10(𝔽97)

19600000000
1000000000
00610000000
00061000000
00006100000
00000610000
00000035000
00000003500
00000000350
004611657200035
,
1000000000
0100000000
0010000000
0001000000
00003500000
00000610000
00000035000
00000006100
00000000610
007807204635
,
1000000000
0100000000
00610000000
00035000000
00003500000
00000610000
00000061000
00000003500
0000000010
003989852235001
,
07000000000
70000000000
0000000100
0000001000
0078127029472234
0000000010
0000010000
0000100000
0010000000
001440608058261385

G:=sub<GL(10,GF(97))| [1,1,0,0,0,0,0,0,0,0,96,0,0,0,0,0,0,0,0,0,0,0,61,0,0,0,0,0,0,46,0,0,0,61,0,0,0,0,0,11,0,0,0,0,61,0,0,0,0,65,0,0,0,0,0,61,0,0,0,72,0,0,0,0,0,0,35,0,0,0,0,0,0,0,0,0,0,35,0,0,0,0,0,0,0,0,0,0,35,0,0,0,0,0,0,0,0,0,0,35],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,1,0,0,0,0,0,8,0,0,0,0,35,0,0,0,0,0,0,0,0,0,0,61,0,0,0,72,0,0,0,0,0,0,35,0,0,0,0,0,0,0,0,0,0,61,0,4,0,0,0,0,0,0,0,0,61,6,0,0,0,0,0,0,0,0,0,35],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,61,0,0,0,0,0,0,39,0,0,0,35,0,0,0,0,0,89,0,0,0,0,35,0,0,0,0,85,0,0,0,0,0,61,0,0,0,2,0,0,0,0,0,0,61,0,0,23,0,0,0,0,0,0,0,35,0,50,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[0,70,0,0,0,0,0,0,0,0,70,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,1,14,0,0,0,0,8,0,0,0,0,40,0,0,0,0,12,0,0,1,0,60,0,0,0,0,70,0,1,0,0,80,0,0,0,1,29,0,0,0,0,58,0,0,1,0,47,0,0,0,0,26,0,0,0,0,22,1,0,0,0,13,0,0,0,0,34,0,0,0,0,85] >;

C6.F9 in GAP, Magma, Sage, TeX

C_6.F_9
% in TeX

G:=Group("C6.F9");
// GroupNames label

G:=SmallGroup(432,566);
// by ID

G=gap.SmallGroup(432,566);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,14,36,58,2244,1411,298,677,1356,1027,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^3=c^3=1,d^8=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of C6.F9 in TeX
Character table of C6.F9 in TeX

׿
×
𝔽