Copied to
clipboard

G = C72:C6order 432 = 24·33

4th semidirect product of C72 and C6 acting faithfully

metacyclic, supersoluble, monomial

Aliases: C72:4C6, D18.C12, Dic9.C12, 3- 1+2:1M4(2), C9:C8:4C6, C9:C12.C4, C8:D9:C3, C9:C24:4C2, C8:3(C9:C6), (C4xD9).2C6, C24.22(C3xS3), C6.10(S3xC12), C12.89(S3xC6), C18.2(C2xC12), C36.14(C2xC6), (C3xC24).10S3, (C3xC12).59D6, C9:1(C3xM4(2)), C32.(C8:S3), (C8x3- 1+2):4C2, (C4x3- 1+2).13C22, (C2xC9:C6).C4, C2.3(C4xC9:C6), (C4xC9:C6).2C2, C4.13(C2xC9:C6), C3.3(C3xC8:S3), (C3xC6).13(C4xS3), (C2x3- 1+2).2(C2xC4), SmallGroup(432,121)

Series: Derived Chief Lower central Upper central

C1C18 — C72:C6
C1C3C9C18C36C4x3- 1+2C4xC9:C6 — C72:C6
C9C18 — C72:C6
C1C4C8

Generators and relations for C72:C6
 G = < a,b | a72=b6=1, bab-1=a29 >

Subgroups: 222 in 64 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2xC4, C9, C9, C32, Dic3, C12, C12, D6, C2xC6, M4(2), D9, C18, C18, C3xS3, C3xC6, C3:C8, C24, C24, C4xS3, C2xC12, 3- 1+2, Dic9, C36, C36, D18, C3xDic3, C3xC12, S3xC6, C8:S3, C3xM4(2), C9:C6, C2x3- 1+2, C9:C8, C72, C72, C4xD9, C3xC3:C8, C3xC24, S3xC12, C9:C12, C4x3- 1+2, C2xC9:C6, C8:D9, C3xC8:S3, C9:C24, C8x3- 1+2, C4xC9:C6, C72:C6
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, C12, D6, C2xC6, M4(2), C3xS3, C4xS3, C2xC12, S3xC6, C8:S3, C3xM4(2), C9:C6, S3xC12, C2xC9:C6, C3xC8:S3, C4xC9:C6, C72:C6

Smallest permutation representation of C72:C6
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(2 6 26 54 50 30)(3 11 51 35 27 59)(4 16)(5 21 29 69 53 45)(7 31)(8 36 32 12 56 60)(9 41 57 65 33 17)(10 46)(13 61)(14 66 38 42 62 18)(15 71 63 23 39 47)(20 24 44 72 68 48)(22 34)(25 49)(28 64)(40 52)(43 67)(58 70)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (2,6,26,54,50,30)(3,11,51,35,27,59)(4,16)(5,21,29,69,53,45)(7,31)(8,36,32,12,56,60)(9,41,57,65,33,17)(10,46)(13,61)(14,66,38,42,62,18)(15,71,63,23,39,47)(20,24,44,72,68,48)(22,34)(25,49)(28,64)(40,52)(43,67)(58,70)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (2,6,26,54,50,30)(3,11,51,35,27,59)(4,16)(5,21,29,69,53,45)(7,31)(8,36,32,12,56,60)(9,41,57,65,33,17)(10,46)(13,61)(14,66,38,42,62,18)(15,71,63,23,39,47)(20,24,44,72,68,48)(22,34)(25,49)(28,64)(40,52)(43,67)(58,70) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(2,6,26,54,50,30),(3,11,51,35,27,59),(4,16),(5,21,29,69,53,45),(7,31),(8,36,32,12,56,60),(9,41,57,65,33,17),(10,46),(13,61),(14,66,38,42,62,18),(15,71,63,23,39,47),(20,24,44,72,68,48),(22,34),(25,49),(28,64),(40,52),(43,67),(58,70)]])

62 conjugacy classes

class 1 2A2B3A3B3C4A4B4C6A6B6C6D6E8A8B8C8D9A9B9C12A12B12C12D12E12F12G12H18A18B18C24A24B24C24D24E24F24G24H24I24J24K24L36A···36F72A···72L
order122333444666668888999121212121212121218181824242424242424242424242436···3672···72
size111823311182331818221818666223333181866622226666181818186···66···6

62 irreducible representations

dim11111111111122222222226666
type++++++++
imageC1C2C2C2C3C4C4C6C6C6C12C12S3D6M4(2)C3xS3C4xS3S3xC6C3xM4(2)C8:S3S3xC12C3xC8:S3C9:C6C2xC9:C6C4xC9:C6C72:C6
kernelC72:C6C9:C24C8x3- 1+2C4xC9:C6C8:D9C9:C12C2xC9:C6C9:C8C72C4xD9Dic9D18C3xC24C3xC123- 1+2C24C3xC6C12C9C32C6C3C8C4C2C1
# reps11112222224411222244481124

Matrix representation of C72:C6 in GL6(F73)

0000367
0000670
6730000
70700000
0067300
00707000
,
1720000
0720000
0000172
0000072
0072000
0072100

G:=sub<GL(6,GF(73))| [0,0,67,70,0,0,0,0,3,70,0,0,0,0,0,0,67,70,0,0,0,0,3,70,3,6,0,0,0,0,67,70,0,0,0,0],[1,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,1,0,0,1,0,0,0,0,0,72,72,0,0] >;

C72:C6 in GAP, Magma, Sage, TeX

C_{72}\rtimes C_6
% in TeX

G:=Group("C72:C6");
// GroupNames label

G:=SmallGroup(432,121);
// by ID

G=gap.SmallGroup(432,121);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,365,92,80,10085,2035,292,14118]);
// Polycyclic

G:=Group<a,b|a^72=b^6=1,b*a*b^-1=a^29>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<