extension | φ:Q→Aut N | d | ρ | Label | ID |
C36.1(C2xC6) = Dic18:C6 | φ: C2xC6/C1 → C2xC6 ⊆ Aut C36 | 72 | 12- | C36.1(C2xC6) | 432,154 |
C36.2(C2xC6) = D36:C6 | φ: C2xC6/C1 → C2xC6 ⊆ Aut C36 | 72 | 12+ | C36.2(C2xC6) | 432,155 |
C36.3(C2xC6) = Dic18.C6 | φ: C2xC6/C1 → C2xC6 ⊆ Aut C36 | 144 | 12- | C36.3(C2xC6) | 432,162 |
C36.4(C2xC6) = D36.C6 | φ: C2xC6/C1 → C2xC6 ⊆ Aut C36 | 72 | 12+ | C36.4(C2xC6) | 432,163 |
C36.5(C2xC6) = Dic18:2C6 | φ: C2xC6/C1 → C2xC6 ⊆ Aut C36 | 72 | 12- | C36.5(C2xC6) | 432,363 |
C36.6(C2xC6) = Q8xC9:C6 | φ: C2xC6/C1 → C2xC6 ⊆ Aut C36 | 72 | 12- | C36.6(C2xC6) | 432,370 |
C36.7(C2xC6) = D36:3C6 | φ: C2xC6/C1 → C2xC6 ⊆ Aut C36 | 72 | 12+ | C36.7(C2xC6) | 432,371 |
C36.8(C2xC6) = C72.C6 | φ: C2xC6/C2 → C6 ⊆ Aut C36 | 144 | 6- | C36.8(C2xC6) | 432,119 |
C36.9(C2xC6) = C72:2C6 | φ: C2xC6/C2 → C6 ⊆ Aut C36 | 72 | 6 | C36.9(C2xC6) | 432,122 |
C36.10(C2xC6) = D72:C3 | φ: C2xC6/C2 → C6 ⊆ Aut C36 | 72 | 6+ | C36.10(C2xC6) | 432,123 |
C36.11(C2xC6) = C2xC36.C6 | φ: C2xC6/C2 → C6 ⊆ Aut C36 | 144 | | C36.11(C2xC6) | 432,352 |
C36.12(C2xC6) = D36:6C6 | φ: C2xC6/C2 → C6 ⊆ Aut C36 | 72 | 6 | C36.12(C2xC6) | 432,355 |
C36.13(C2xC6) = C8xC9:C6 | φ: C2xC6/C2 → C6 ⊆ Aut C36 | 72 | 6 | C36.13(C2xC6) | 432,120 |
C36.14(C2xC6) = C72:C6 | φ: C2xC6/C2 → C6 ⊆ Aut C36 | 72 | 6 | C36.14(C2xC6) | 432,121 |
C36.15(C2xC6) = C2xC9:C24 | φ: C2xC6/C2 → C6 ⊆ Aut C36 | 144 | | C36.15(C2xC6) | 432,142 |
C36.16(C2xC6) = C36.C12 | φ: C2xC6/C2 → C6 ⊆ Aut C36 | 72 | 6 | C36.16(C2xC6) | 432,143 |
C36.17(C2xC6) = D8x3- 1+2 | φ: C2xC6/C2 → C6 ⊆ Aut C36 | 72 | 6 | C36.17(C2xC6) | 432,217 |
C36.18(C2xC6) = SD16x3- 1+2 | φ: C2xC6/C2 → C6 ⊆ Aut C36 | 72 | 6 | C36.18(C2xC6) | 432,220 |
C36.19(C2xC6) = Q16x3- 1+2 | φ: C2xC6/C2 → C6 ⊆ Aut C36 | 144 | 6 | C36.19(C2xC6) | 432,223 |
C36.20(C2xC6) = C2xQ8x3- 1+2 | φ: C2xC6/C2 → C6 ⊆ Aut C36 | 144 | | C36.20(C2xC6) | 432,408 |
C36.21(C2xC6) = C3xD4.D9 | φ: C2xC6/C3 → C22 ⊆ Aut C36 | 72 | 4 | C36.21(C2xC6) | 432,148 |
C36.22(C2xC6) = C3xD4:D9 | φ: C2xC6/C3 → C22 ⊆ Aut C36 | 72 | 4 | C36.22(C2xC6) | 432,149 |
C36.23(C2xC6) = C3xC9:Q16 | φ: C2xC6/C3 → C22 ⊆ Aut C36 | 144 | 4 | C36.23(C2xC6) | 432,156 |
C36.24(C2xC6) = C3xQ8:2D9 | φ: C2xC6/C3 → C22 ⊆ Aut C36 | 144 | 4 | C36.24(C2xC6) | 432,157 |
C36.25(C2xC6) = C3xD4:2D9 | φ: C2xC6/C3 → C22 ⊆ Aut C36 | 72 | 4 | C36.25(C2xC6) | 432,357 |
C36.26(C2xC6) = C3xQ8xD9 | φ: C2xC6/C3 → C22 ⊆ Aut C36 | 144 | 4 | C36.26(C2xC6) | 432,364 |
C36.27(C2xC6) = C3xQ8:3D9 | φ: C2xC6/C3 → C22 ⊆ Aut C36 | 144 | 4 | C36.27(C2xC6) | 432,365 |
C36.28(C2xC6) = C2xC8x3- 1+2 | φ: C2xC6/C22 → C3 ⊆ Aut C36 | 144 | | C36.28(C2xC6) | 432,211 |
C36.29(C2xC6) = M4(2)x3- 1+2 | φ: C2xC6/C22 → C3 ⊆ Aut C36 | 72 | 6 | C36.29(C2xC6) | 432,214 |
C36.30(C2xC6) = C4oD4x3- 1+2 | φ: C2xC6/C22 → C3 ⊆ Aut C36 | 72 | 6 | C36.30(C2xC6) | 432,411 |
C36.31(C2xC6) = C3xDic36 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 144 | 2 | C36.31(C2xC6) | 432,104 |
C36.32(C2xC6) = C3xC72:C2 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 144 | 2 | C36.32(C2xC6) | 432,107 |
C36.33(C2xC6) = C3xD72 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 144 | 2 | C36.33(C2xC6) | 432,108 |
C36.34(C2xC6) = C6xDic18 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 144 | | C36.34(C2xC6) | 432,340 |
C36.35(C2xC6) = D9xC24 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 144 | 2 | C36.35(C2xC6) | 432,105 |
C36.36(C2xC6) = C3xC8:D9 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 144 | 2 | C36.36(C2xC6) | 432,106 |
C36.37(C2xC6) = C6xC9:C8 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 144 | | C36.37(C2xC6) | 432,124 |
C36.38(C2xC6) = C3xC4.Dic9 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 72 | 2 | C36.38(C2xC6) | 432,125 |
C36.39(C2xC6) = C3xD36:5C2 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 72 | 2 | C36.39(C2xC6) | 432,344 |
C36.40(C2xC6) = D8xC27 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 216 | 2 | C36.40(C2xC6) | 432,25 |
C36.41(C2xC6) = SD16xC27 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 216 | 2 | C36.41(C2xC6) | 432,26 |
C36.42(C2xC6) = Q16xC27 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 432 | 2 | C36.42(C2xC6) | 432,27 |
C36.43(C2xC6) = D4xC54 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 216 | | C36.43(C2xC6) | 432,54 |
C36.44(C2xC6) = Q8xC54 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 432 | | C36.44(C2xC6) | 432,55 |
C36.45(C2xC6) = C4oD4xC27 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 216 | 2 | C36.45(C2xC6) | 432,56 |
C36.46(C2xC6) = D8xC3xC9 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 216 | | C36.46(C2xC6) | 432,215 |
C36.47(C2xC6) = SD16xC3xC9 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 216 | | C36.47(C2xC6) | 432,218 |
C36.48(C2xC6) = Q16xC3xC9 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 432 | | C36.48(C2xC6) | 432,221 |
C36.49(C2xC6) = Q8xC3xC18 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 432 | | C36.49(C2xC6) | 432,406 |
C36.50(C2xC6) = C4oD4xC3xC9 | φ: C2xC6/C6 → C2 ⊆ Aut C36 | 216 | | C36.50(C2xC6) | 432,409 |
C36.51(C2xC6) = M4(2)xC27 | central extension (φ=1) | 216 | 2 | C36.51(C2xC6) | 432,24 |
C36.52(C2xC6) = M4(2)xC3xC9 | central extension (φ=1) | 216 | | C36.52(C2xC6) | 432,212 |