Copied to
clipboard

G = He3:11SD16order 432 = 24·33

2nd semidirect product of He3 and SD16 acting via SD16/Q8=C2

non-abelian, supersoluble, monomial

Aliases: He3:11SD16, (Q8xHe3):2C2, He3:4C8:7C2, (C3xC12).18D6, (Q8xC32):2S3, (C2xHe3).36D4, He3:5D4.2C2, Q8:2(He3:C2), C2.6(He3:7D4), C32:6(Q8:2S3), C6.42(C32:7D4), (C4xHe3).14C22, C3.2(C32:11SD16), C12.46(C2xC3:S3), C4.3(C2xHe3:C2), (C3xC6).37(C3:D4), (C3xQ8).14(C3:S3), SmallGroup(432,196)

Series: Derived Chief Lower central Upper central

C1C3C4xHe3 — He3:11SD16
C1C3C32He3C2xHe3C4xHe3He3:5D4 — He3:11SD16
He3C2xHe3C4xHe3 — He3:11SD16
C1C6C12C3xQ8

Generators and relations for He3:11SD16
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, dad-1=eae=a-1, bc=cb, bd=db, be=eb, dcd-1=ece=c-1, ede=d3 >

Subgroups: 501 in 110 conjugacy classes, 31 normal (15 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C32, C12, C12, D6, C2xC6, SD16, C3xS3, C3xC6, C3:C8, C24, D12, C3xD4, C3xQ8, C3xQ8, He3, C3xC12, C3xC12, S3xC6, Q8:2S3, C3xSD16, He3:C2, C2xHe3, C3xC3:C8, C3xD12, Q8xC32, C4xHe3, C4xHe3, C2xHe3:C2, C3xQ8:2S3, He3:4C8, He3:5D4, Q8xHe3, He3:11SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, C3:S3, C3:D4, C2xC3:S3, Q8:2S3, He3:C2, C32:7D4, C2xHe3:C2, C32:11SD16, He3:7D4, He3:11SD16

Smallest permutation representation of He3:11SD16
On 72 points
Generators in S72
(1 56 35)(2 36 49)(3 50 37)(4 38 51)(5 52 39)(6 40 53)(7 54 33)(8 34 55)(9 27 57)(10 58 28)(11 29 59)(12 60 30)(13 31 61)(14 62 32)(15 25 63)(16 64 26)(17 67 48)(18 41 68)(19 69 42)(20 43 70)(21 71 44)(22 45 72)(23 65 46)(24 47 66)
(1 15 41)(2 16 42)(3 9 43)(4 10 44)(5 11 45)(6 12 46)(7 13 47)(8 14 48)(17 34 62)(18 35 63)(19 36 64)(20 37 57)(21 38 58)(22 39 59)(23 40 60)(24 33 61)(25 68 56)(26 69 49)(27 70 50)(28 71 51)(29 72 52)(30 65 53)(31 66 54)(32 67 55)
(1 68 18)(2 19 69)(3 70 20)(4 21 71)(5 72 22)(6 23 65)(7 66 24)(8 17 67)(9 50 37)(10 38 51)(11 52 39)(12 40 53)(13 54 33)(14 34 55)(15 56 35)(16 36 49)(25 63 41)(26 42 64)(27 57 43)(28 44 58)(29 59 45)(30 46 60)(31 61 47)(32 48 62)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 4)(3 7)(6 8)(9 13)(10 16)(12 14)(17 65)(18 68)(19 71)(20 66)(21 69)(22 72)(23 67)(24 70)(25 63)(26 58)(27 61)(28 64)(29 59)(30 62)(31 57)(32 60)(33 50)(34 53)(35 56)(36 51)(37 54)(38 49)(39 52)(40 55)(42 44)(43 47)(46 48)

G:=sub<Sym(72)| (1,56,35)(2,36,49)(3,50,37)(4,38,51)(5,52,39)(6,40,53)(7,54,33)(8,34,55)(9,27,57)(10,58,28)(11,29,59)(12,60,30)(13,31,61)(14,62,32)(15,25,63)(16,64,26)(17,67,48)(18,41,68)(19,69,42)(20,43,70)(21,71,44)(22,45,72)(23,65,46)(24,47,66), (1,15,41)(2,16,42)(3,9,43)(4,10,44)(5,11,45)(6,12,46)(7,13,47)(8,14,48)(17,34,62)(18,35,63)(19,36,64)(20,37,57)(21,38,58)(22,39,59)(23,40,60)(24,33,61)(25,68,56)(26,69,49)(27,70,50)(28,71,51)(29,72,52)(30,65,53)(31,66,54)(32,67,55), (1,68,18)(2,19,69)(3,70,20)(4,21,71)(5,72,22)(6,23,65)(7,66,24)(8,17,67)(9,50,37)(10,38,51)(11,52,39)(12,40,53)(13,54,33)(14,34,55)(15,56,35)(16,36,49)(25,63,41)(26,42,64)(27,57,43)(28,44,58)(29,59,45)(30,46,60)(31,61,47)(32,48,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,65)(18,68)(19,71)(20,66)(21,69)(22,72)(23,67)(24,70)(25,63)(26,58)(27,61)(28,64)(29,59)(30,62)(31,57)(32,60)(33,50)(34,53)(35,56)(36,51)(37,54)(38,49)(39,52)(40,55)(42,44)(43,47)(46,48)>;

G:=Group( (1,56,35)(2,36,49)(3,50,37)(4,38,51)(5,52,39)(6,40,53)(7,54,33)(8,34,55)(9,27,57)(10,58,28)(11,29,59)(12,60,30)(13,31,61)(14,62,32)(15,25,63)(16,64,26)(17,67,48)(18,41,68)(19,69,42)(20,43,70)(21,71,44)(22,45,72)(23,65,46)(24,47,66), (1,15,41)(2,16,42)(3,9,43)(4,10,44)(5,11,45)(6,12,46)(7,13,47)(8,14,48)(17,34,62)(18,35,63)(19,36,64)(20,37,57)(21,38,58)(22,39,59)(23,40,60)(24,33,61)(25,68,56)(26,69,49)(27,70,50)(28,71,51)(29,72,52)(30,65,53)(31,66,54)(32,67,55), (1,68,18)(2,19,69)(3,70,20)(4,21,71)(5,72,22)(6,23,65)(7,66,24)(8,17,67)(9,50,37)(10,38,51)(11,52,39)(12,40,53)(13,54,33)(14,34,55)(15,56,35)(16,36,49)(25,63,41)(26,42,64)(27,57,43)(28,44,58)(29,59,45)(30,46,60)(31,61,47)(32,48,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,65)(18,68)(19,71)(20,66)(21,69)(22,72)(23,67)(24,70)(25,63)(26,58)(27,61)(28,64)(29,59)(30,62)(31,57)(32,60)(33,50)(34,53)(35,56)(36,51)(37,54)(38,49)(39,52)(40,55)(42,44)(43,47)(46,48) );

G=PermutationGroup([[(1,56,35),(2,36,49),(3,50,37),(4,38,51),(5,52,39),(6,40,53),(7,54,33),(8,34,55),(9,27,57),(10,58,28),(11,29,59),(12,60,30),(13,31,61),(14,62,32),(15,25,63),(16,64,26),(17,67,48),(18,41,68),(19,69,42),(20,43,70),(21,71,44),(22,45,72),(23,65,46),(24,47,66)], [(1,15,41),(2,16,42),(3,9,43),(4,10,44),(5,11,45),(6,12,46),(7,13,47),(8,14,48),(17,34,62),(18,35,63),(19,36,64),(20,37,57),(21,38,58),(22,39,59),(23,40,60),(24,33,61),(25,68,56),(26,69,49),(27,70,50),(28,71,51),(29,72,52),(30,65,53),(31,66,54),(32,67,55)], [(1,68,18),(2,19,69),(3,70,20),(4,21,71),(5,72,22),(6,23,65),(7,66,24),(8,17,67),(9,50,37),(10,38,51),(11,52,39),(12,40,53),(13,54,33),(14,34,55),(15,56,35),(16,36,49),(25,63,41),(26,42,64),(27,57,43),(28,44,58),(29,59,45),(30,46,60),(31,61,47),(32,48,62)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,4),(3,7),(6,8),(9,13),(10,16),(12,14),(17,65),(18,68),(19,71),(20,66),(21,69),(22,72),(23,67),(24,70),(25,63),(26,58),(27,61),(28,64),(29,59),(30,62),(31,57),(32,60),(33,50),(34,53),(35,56),(36,51),(37,54),(38,49),(39,52),(40,55),(42,44),(43,47),(46,48)]])

41 conjugacy classes

class 1 2A2B3A3B3C3D3E3F4A4B6A6B6C6D6E6F6G6H8A8B12A12B12C12D12E···12P24A24B24C24D
order1223333334466666666881212121212···1224242424
size11361166662411666636361818224412···1218181818

41 irreducible representations

dim11112222233466
type++++++++
imageC1C2C2C2S3D4D6SD16C3:D4He3:C2C2xHe3:C2Q8:2S3He3:7D4He3:11SD16
kernelHe3:11SD16He3:4C8He3:5D4Q8xHe3Q8xC32C2xHe3C3xC12He3C3xC6Q8C4C32C2C1
# reps11114142844424

Matrix representation of He3:11SD16 in GL5(F73)

10000
01000
00010
00001
00100
,
10000
01000
006400
000640
000064
,
10000
01000
000640
00001
00800
,
013000
4561000
007200
000072
000720
,
10000
4472000
00100
00001
00010

G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,64,0,0,0,0,0,64,0,0,0,0,0,64],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,8,0,0,64,0,0,0,0,0,1,0],[0,45,0,0,0,13,61,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,72,0],[1,44,0,0,0,0,72,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;

He3:11SD16 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_{11}{\rm SD}_{16}
% in TeX

G:=Group("He3:11SD16");
// GroupNames label

G:=SmallGroup(432,196);
// by ID

G=gap.SmallGroup(432,196);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,64,254,135,58,1124,4037,537]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=e*a*e=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<