Extensions 1→N→G→Q→1 with N=He3 and Q=SD16

Direct product G=N×Q with N=He3 and Q=SD16
dρLabelID
SD16×He3726SD16xHe3432,219

Semidirect products G=N:Q with N=He3 and Q=SD16
extensionφ:Q→Out NdρLabelID
He3⋊SD16 = He3⋊SD16φ: SD16/C1SD16 ⊆ Out He3276+He3:SD16432,520
He32SD16 = He32SD16φ: SD16/C2D4 ⊆ Out He3726He3:2SD16432,234
He33SD16 = He33SD16φ: SD16/C4C22 ⊆ Out He3726He3:3SD16432,78
He34SD16 = He34SD16φ: SD16/C4C22 ⊆ Out He37212-He3:4SD16432,84
He35SD16 = He35SD16φ: SD16/C4C22 ⊆ Out He37212+He3:5SD16432,85
He36SD16 = He36SD16φ: SD16/C8C2 ⊆ Out He3726He3:6SD16432,117
He37SD16 = He37SD16φ: SD16/C8C2 ⊆ Out He3726He3:7SD16432,175
He38SD16 = He38SD16φ: SD16/D4C2 ⊆ Out He37212-He3:8SD16432,152
He39SD16 = He39SD16φ: SD16/D4C2 ⊆ Out He3726He3:9SD16432,193
He310SD16 = He310SD16φ: SD16/Q8C2 ⊆ Out He37212+He3:10SD16432,161
He311SD16 = He311SD16φ: SD16/Q8C2 ⊆ Out He3726He3:11SD16432,196


׿
×
𝔽