Extensions 1→N→G→Q→1 with N=C2×He3 and Q=D4

Direct product G=N×Q with N=C2×He3 and Q=D4
dρLabelID
C2×D4×He372C2xD4xHe3432,404

Semidirect products G=N:Q with N=C2×He3 and Q=D4
extensionφ:Q→Out NdρLabelID
(C2×He3)⋊D4 = C2×He3⋊D4φ: D4/C1D4 ⊆ Out C2×He3366+(C2xHe3):D4432,530
(C2×He3)⋊2D4 = C2×He32D4φ: D4/C2C22 ⊆ Out C2×He372(C2xHe3):2D4432,320
(C2×He3)⋊3D4 = C2×He33D4φ: D4/C2C22 ⊆ Out C2×He372(C2xHe3):3D4432,322
(C2×He3)⋊4D4 = C2×He34D4φ: D4/C4C2 ⊆ Out C2×He372(C2xHe3):4D4432,350
(C2×He3)⋊5D4 = C2×He35D4φ: D4/C4C2 ⊆ Out C2×He372(C2xHe3):5D4432,386
(C2×He3)⋊6D4 = C2×He36D4φ: D4/C22C2 ⊆ Out C2×He372(C2xHe3):6D4432,377
(C2×He3)⋊7D4 = C2×He37D4φ: D4/C22C2 ⊆ Out C2×He372(C2xHe3):7D4432,399

Non-split extensions G=N.Q with N=C2×He3 and Q=D4
extensionφ:Q→Out NdρLabelID
(C2×He3).1D4 = He32SD16φ: D4/C1D4 ⊆ Out C2×He3726(C2xHe3).1D4432,234
(C2×He3).2D4 = He3⋊D8φ: D4/C1D4 ⊆ Out C2×He3726+(C2xHe3).2D4432,235
(C2×He3).3D4 = He3⋊Q16φ: D4/C1D4 ⊆ Out C2×He31446-(C2xHe3).3D4432,236
(C2×He3).4D4 = C6.S3≀C2φ: D4/C1D4 ⊆ Out C2×He3726-(C2xHe3).4D4432,237
(C2×He3).5D4 = C32⋊D6⋊C4φ: D4/C1D4 ⊆ Out C2×He3366(C2xHe3).5D4432,238
(C2×He3).6D4 = He33SD16φ: D4/C2C22 ⊆ Out C2×He3726(C2xHe3).6D4432,78
(C2×He3).7D4 = He32D8φ: D4/C2C22 ⊆ Out C2×He3726+(C2xHe3).7D4432,79
(C2×He3).8D4 = He32Q16φ: D4/C2C22 ⊆ Out C2×He31446-(C2xHe3).8D4432,80
(C2×He3).9D4 = He33D8φ: D4/C2C22 ⊆ Out C2×He37212+(C2xHe3).9D4432,83
(C2×He3).10D4 = He34SD16φ: D4/C2C22 ⊆ Out C2×He37212-(C2xHe3).10D4432,84
(C2×He3).11D4 = He35SD16φ: D4/C2C22 ⊆ Out C2×He37212+(C2xHe3).11D4432,85
(C2×He3).12D4 = He33Q16φ: D4/C2C22 ⊆ Out C2×He314412-(C2xHe3).12D4432,86
(C2×He3).13D4 = C62.D6φ: D4/C2C22 ⊆ Out C2×He3144(C2xHe3).13D4432,95
(C2×He3).14D4 = C62.3D6φ: D4/C2C22 ⊆ Out C2×He3144(C2xHe3).14D4432,96
(C2×He3).15D4 = C62.4D6φ: D4/C2C22 ⊆ Out C2×He372(C2xHe3).15D4432,97
(C2×He3).16D4 = C62.5D6φ: D4/C2C22 ⊆ Out C2×He372(C2xHe3).16D4432,98
(C2×He3).17D4 = He34Q16φ: D4/C4C2 ⊆ Out C2×He31446-(C2xHe3).17D4432,114
(C2×He3).18D4 = He36SD16φ: D4/C4C2 ⊆ Out C2×He3726(C2xHe3).18D4432,117
(C2×He3).19D4 = He34D8φ: D4/C4C2 ⊆ Out C2×He3726+(C2xHe3).19D4432,118
(C2×He3).20D4 = C62.20D6φ: D4/C4C2 ⊆ Out C2×He3144(C2xHe3).20D4432,140
(C2×He3).21D4 = C62.21D6φ: D4/C4C2 ⊆ Out C2×He372(C2xHe3).21D4432,141
(C2×He3).22D4 = He37SD16φ: D4/C4C2 ⊆ Out C2×He3726(C2xHe3).22D4432,175
(C2×He3).23D4 = He35D8φ: D4/C4C2 ⊆ Out C2×He3726(C2xHe3).23D4432,176
(C2×He3).24D4 = He35Q16φ: D4/C4C2 ⊆ Out C2×He31446(C2xHe3).24D4432,177
(C2×He3).25D4 = C62.30D6φ: D4/C4C2 ⊆ Out C2×He3144(C2xHe3).25D4432,188
(C2×He3).26D4 = C62.19D6φ: D4/C22C2 ⊆ Out C2×He3144(C2xHe3).26D4432,139
(C2×He3).27D4 = He38SD16φ: D4/C22C2 ⊆ Out C2×He37212-(C2xHe3).27D4432,152
(C2×He3).28D4 = He36D8φ: D4/C22C2 ⊆ Out C2×He37212+(C2xHe3).28D4432,153
(C2×He3).29D4 = He36Q16φ: D4/C22C2 ⊆ Out C2×He314412-(C2xHe3).29D4432,160
(C2×He3).30D4 = He310SD16φ: D4/C22C2 ⊆ Out C2×He37212+(C2xHe3).30D4432,161
(C2×He3).31D4 = C623C12φ: D4/C22C2 ⊆ Out C2×He372(C2xHe3).31D4432,166
(C2×He3).32D4 = C62.29D6φ: D4/C22C2 ⊆ Out C2×He3144(C2xHe3).32D4432,187
(C2×He3).33D4 = C62.31D6φ: D4/C22C2 ⊆ Out C2×He372(C2xHe3).33D4432,189
(C2×He3).34D4 = He37D8φ: D4/C22C2 ⊆ Out C2×He3726(C2xHe3).34D4432,192
(C2×He3).35D4 = He39SD16φ: D4/C22C2 ⊆ Out C2×He3726(C2xHe3).35D4432,193
(C2×He3).36D4 = He311SD16φ: D4/C22C2 ⊆ Out C2×He3726(C2xHe3).36D4432,196
(C2×He3).37D4 = He37Q16φ: D4/C22C2 ⊆ Out C2×He31446(C2xHe3).37D4432,197
(C2×He3).38D4 = C624Dic3φ: D4/C22C2 ⊆ Out C2×He372(C2xHe3).38D4432,199
(C2×He3).39D4 = C22⋊C4×He3φ: trivial image72(C2xHe3).39D4432,204
(C2×He3).40D4 = C4⋊C4×He3φ: trivial image144(C2xHe3).40D4432,207
(C2×He3).41D4 = D8×He3φ: trivial image726(C2xHe3).41D4432,216
(C2×He3).42D4 = SD16×He3φ: trivial image726(C2xHe3).42D4432,219
(C2×He3).43D4 = Q16×He3φ: trivial image1446(C2xHe3).43D4432,222

׿
×
𝔽