extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×He3).1D4 = He3⋊2SD16 | φ: D4/C1 → D4 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).1D4 | 432,234 |
(C2×He3).2D4 = He3⋊D8 | φ: D4/C1 → D4 ⊆ Out C2×He3 | 72 | 6+ | (C2xHe3).2D4 | 432,235 |
(C2×He3).3D4 = He3⋊Q16 | φ: D4/C1 → D4 ⊆ Out C2×He3 | 144 | 6- | (C2xHe3).3D4 | 432,236 |
(C2×He3).4D4 = C6.S3≀C2 | φ: D4/C1 → D4 ⊆ Out C2×He3 | 72 | 6- | (C2xHe3).4D4 | 432,237 |
(C2×He3).5D4 = C32⋊D6⋊C4 | φ: D4/C1 → D4 ⊆ Out C2×He3 | 36 | 6 | (C2xHe3).5D4 | 432,238 |
(C2×He3).6D4 = He3⋊3SD16 | φ: D4/C2 → C22 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).6D4 | 432,78 |
(C2×He3).7D4 = He3⋊2D8 | φ: D4/C2 → C22 ⊆ Out C2×He3 | 72 | 6+ | (C2xHe3).7D4 | 432,79 |
(C2×He3).8D4 = He3⋊2Q16 | φ: D4/C2 → C22 ⊆ Out C2×He3 | 144 | 6- | (C2xHe3).8D4 | 432,80 |
(C2×He3).9D4 = He3⋊3D8 | φ: D4/C2 → C22 ⊆ Out C2×He3 | 72 | 12+ | (C2xHe3).9D4 | 432,83 |
(C2×He3).10D4 = He3⋊4SD16 | φ: D4/C2 → C22 ⊆ Out C2×He3 | 72 | 12- | (C2xHe3).10D4 | 432,84 |
(C2×He3).11D4 = He3⋊5SD16 | φ: D4/C2 → C22 ⊆ Out C2×He3 | 72 | 12+ | (C2xHe3).11D4 | 432,85 |
(C2×He3).12D4 = He3⋊3Q16 | φ: D4/C2 → C22 ⊆ Out C2×He3 | 144 | 12- | (C2xHe3).12D4 | 432,86 |
(C2×He3).13D4 = C62.D6 | φ: D4/C2 → C22 ⊆ Out C2×He3 | 144 | | (C2xHe3).13D4 | 432,95 |
(C2×He3).14D4 = C62.3D6 | φ: D4/C2 → C22 ⊆ Out C2×He3 | 144 | | (C2xHe3).14D4 | 432,96 |
(C2×He3).15D4 = C62.4D6 | φ: D4/C2 → C22 ⊆ Out C2×He3 | 72 | | (C2xHe3).15D4 | 432,97 |
(C2×He3).16D4 = C62.5D6 | φ: D4/C2 → C22 ⊆ Out C2×He3 | 72 | | (C2xHe3).16D4 | 432,98 |
(C2×He3).17D4 = He3⋊4Q16 | φ: D4/C4 → C2 ⊆ Out C2×He3 | 144 | 6- | (C2xHe3).17D4 | 432,114 |
(C2×He3).18D4 = He3⋊6SD16 | φ: D4/C4 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).18D4 | 432,117 |
(C2×He3).19D4 = He3⋊4D8 | φ: D4/C4 → C2 ⊆ Out C2×He3 | 72 | 6+ | (C2xHe3).19D4 | 432,118 |
(C2×He3).20D4 = C62.20D6 | φ: D4/C4 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).20D4 | 432,140 |
(C2×He3).21D4 = C62.21D6 | φ: D4/C4 → C2 ⊆ Out C2×He3 | 72 | | (C2xHe3).21D4 | 432,141 |
(C2×He3).22D4 = He3⋊7SD16 | φ: D4/C4 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).22D4 | 432,175 |
(C2×He3).23D4 = He3⋊5D8 | φ: D4/C4 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).23D4 | 432,176 |
(C2×He3).24D4 = He3⋊5Q16 | φ: D4/C4 → C2 ⊆ Out C2×He3 | 144 | 6 | (C2xHe3).24D4 | 432,177 |
(C2×He3).25D4 = C62.30D6 | φ: D4/C4 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).25D4 | 432,188 |
(C2×He3).26D4 = C62.19D6 | φ: D4/C22 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).26D4 | 432,139 |
(C2×He3).27D4 = He3⋊8SD16 | φ: D4/C22 → C2 ⊆ Out C2×He3 | 72 | 12- | (C2xHe3).27D4 | 432,152 |
(C2×He3).28D4 = He3⋊6D8 | φ: D4/C22 → C2 ⊆ Out C2×He3 | 72 | 12+ | (C2xHe3).28D4 | 432,153 |
(C2×He3).29D4 = He3⋊6Q16 | φ: D4/C22 → C2 ⊆ Out C2×He3 | 144 | 12- | (C2xHe3).29D4 | 432,160 |
(C2×He3).30D4 = He3⋊10SD16 | φ: D4/C22 → C2 ⊆ Out C2×He3 | 72 | 12+ | (C2xHe3).30D4 | 432,161 |
(C2×He3).31D4 = C62⋊3C12 | φ: D4/C22 → C2 ⊆ Out C2×He3 | 72 | | (C2xHe3).31D4 | 432,166 |
(C2×He3).32D4 = C62.29D6 | φ: D4/C22 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).32D4 | 432,187 |
(C2×He3).33D4 = C62.31D6 | φ: D4/C22 → C2 ⊆ Out C2×He3 | 72 | | (C2xHe3).33D4 | 432,189 |
(C2×He3).34D4 = He3⋊7D8 | φ: D4/C22 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).34D4 | 432,192 |
(C2×He3).35D4 = He3⋊9SD16 | φ: D4/C22 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).35D4 | 432,193 |
(C2×He3).36D4 = He3⋊11SD16 | φ: D4/C22 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).36D4 | 432,196 |
(C2×He3).37D4 = He3⋊7Q16 | φ: D4/C22 → C2 ⊆ Out C2×He3 | 144 | 6 | (C2xHe3).37D4 | 432,197 |
(C2×He3).38D4 = C62⋊4Dic3 | φ: D4/C22 → C2 ⊆ Out C2×He3 | 72 | | (C2xHe3).38D4 | 432,199 |
(C2×He3).39D4 = C22⋊C4×He3 | φ: trivial image | 72 | | (C2xHe3).39D4 | 432,204 |
(C2×He3).40D4 = C4⋊C4×He3 | φ: trivial image | 144 | | (C2xHe3).40D4 | 432,207 |
(C2×He3).41D4 = D8×He3 | φ: trivial image | 72 | 6 | (C2xHe3).41D4 | 432,216 |
(C2×He3).42D4 = SD16×He3 | φ: trivial image | 72 | 6 | (C2xHe3).42D4 | 432,219 |
(C2×He3).43D4 = Q16×He3 | φ: trivial image | 144 | 6 | (C2xHe3).43D4 | 432,222 |