non-abelian, supersoluble, monomial
Aliases: He3⋊2D8, C12.82S32, (C3×C12).2D6, C12⋊S3⋊1S3, He3⋊4C8⋊1C2, He3⋊4D4⋊1C2, (C2×He3).7D4, C32⋊1(D4⋊S3), C4.9(C32⋊D6), C6.2(D6⋊S3), C2.4(He3⋊2D4), C3.1(C32⋊2D8), (C4×He3).2C22, (C3×C6).2(C3⋊D4), SmallGroup(432,79)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for He3⋊2D8
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, dad-1=eae=a-1, bc=cb, bd=db, ebe=b-1, dcd-1=c-1, ce=ec, ede=d-1 >
Subgroups: 651 in 85 conjugacy classes, 21 normal (11 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, C32, C32, C12, C12, D6, C2×C6, D8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, D12, C3×D4, He3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, D24, D4⋊S3, C32⋊C6, C2×He3, C3×C3⋊C8, C3×D12, C12⋊S3, C4×He3, C2×C32⋊C6, C3⋊D24, He3⋊4C8, He3⋊4D4, He3⋊2D8
Quotients: C1, C2, C22, S3, D4, D6, D8, C3⋊D4, S32, D4⋊S3, D6⋊S3, C32⋊D6, C32⋊2D8, He3⋊2D4, He3⋊2D8
Character table of He3⋊2D8
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 36 | 36 | 2 | 6 | 6 | 12 | 2 | 2 | 6 | 6 | 12 | 36 | 36 | 36 | 36 | 18 | 18 | 2 | 2 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | -2 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 2 | 0 | 2 | -1 | 2 | -1 | 2 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | 0 | 0 | 2 | 2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | -1 | -1 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ9 | 2 | 2 | -2 | 0 | 2 | -1 | 2 | -1 | 2 | 2 | -1 | 2 | -1 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ10 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ11 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | -2 | 2 | 2 | -1 | -1 | 0 | -√-3 | √-3 | 0 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ13 | 2 | 2 | 0 | 0 | 2 | -1 | 2 | -1 | -2 | 2 | -1 | 2 | -1 | -√-3 | 0 | 0 | √-3 | 0 | 0 | -2 | -2 | 1 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ14 | 2 | 2 | 0 | 0 | 2 | -1 | 2 | -1 | -2 | 2 | -1 | 2 | -1 | √-3 | 0 | 0 | -√-3 | 0 | 0 | -2 | -2 | 1 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ15 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | -2 | 2 | 2 | -1 | -1 | 0 | √-3 | -√-3 | 0 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ16 | 4 | 4 | 0 | 0 | 4 | -2 | -2 | 1 | 4 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | -2 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ17 | 4 | -4 | 0 | 0 | 4 | -2 | 4 | -2 | 0 | -4 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊S3, Schur index 2 |
ρ18 | 4 | -4 | 0 | 0 | 4 | 4 | -2 | -2 | 0 | -4 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊S3, Schur index 2 |
ρ19 | 4 | 4 | 0 | 0 | 4 | -2 | -2 | 1 | -4 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | -4 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | symplectic lifted from D6⋊S3, Schur index 2 |
ρ20 | 4 | -4 | 0 | 0 | 4 | -2 | -2 | 1 | 0 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3i | 0 | -3i | 0 | 0 | 0 | 0 | complex lifted from C32⋊2D8 |
ρ21 | 4 | -4 | 0 | 0 | 4 | -2 | -2 | 1 | 0 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3i | 0 | 3i | 0 | 0 | 0 | 0 | complex lifted from C32⋊2D8 |
ρ22 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -3 | -3 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from C32⋊D6 |
ρ23 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -3 | -3 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from C32⋊D6 |
ρ24 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | -6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | -√3 | √3 | √3 | -√3 | orthogonal lifted from He3⋊2D4 |
ρ25 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | -6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | √3 | -√3 | -√3 | √3 | orthogonal lifted from He3⋊2D4 |
ρ26 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | 3√3 | -3√3 | 0 | 0 | 0 | 0 | ζ83ζ3+ζ83+ζ8ζ3 | ζ87ζ3+ζ85ζ3+ζ85 | ζ87ζ32+ζ87+ζ85ζ32 | ζ83ζ32+ζ8ζ32+ζ8 | orthogonal faithful |
ρ27 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -3√3 | 3√3 | 0 | 0 | 0 | 0 | ζ87ζ32+ζ87+ζ85ζ32 | ζ83ζ32+ζ8ζ32+ζ8 | ζ83ζ3+ζ83+ζ8ζ3 | ζ87ζ3+ζ85ζ3+ζ85 | orthogonal faithful |
ρ28 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -3√3 | 3√3 | 0 | 0 | 0 | 0 | ζ87ζ3+ζ85ζ3+ζ85 | ζ83ζ3+ζ83+ζ8ζ3 | ζ83ζ32+ζ8ζ32+ζ8 | ζ87ζ32+ζ87+ζ85ζ32 | orthogonal faithful |
ρ29 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | 3√3 | -3√3 | 0 | 0 | 0 | 0 | ζ83ζ32+ζ8ζ32+ζ8 | ζ87ζ32+ζ87+ζ85ζ32 | ζ87ζ3+ζ85ζ3+ζ85 | ζ83ζ3+ζ83+ζ8ζ3 | orthogonal faithful |
(25 51 46)(26 47 52)(27 53 48)(28 41 54)(29 55 42)(30 43 56)(31 49 44)(32 45 50)(33 60 70)(34 71 61)(35 62 72)(36 65 63)(37 64 66)(38 67 57)(39 58 68)(40 69 59)
(1 20 13)(2 21 14)(3 22 15)(4 23 16)(5 24 9)(6 17 10)(7 18 11)(8 19 12)(25 51 46)(26 52 47)(27 53 48)(28 54 41)(29 55 42)(30 56 43)(31 49 44)(32 50 45)(33 60 70)(34 61 71)(35 62 72)(36 63 65)(37 64 66)(38 57 67)(39 58 68)(40 59 69)
(1 61 27)(2 28 62)(3 63 29)(4 30 64)(5 57 31)(6 32 58)(7 59 25)(8 26 60)(9 38 44)(10 45 39)(11 40 46)(12 47 33)(13 34 48)(14 41 35)(15 36 42)(16 43 37)(17 50 68)(18 69 51)(19 52 70)(20 71 53)(21 54 72)(22 65 55)(23 56 66)(24 67 49)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 8)(3 7)(4 6)(9 24)(10 23)(11 22)(12 21)(13 20)(14 19)(15 18)(16 17)(25 29)(26 28)(30 32)(33 72)(34 71)(35 70)(36 69)(37 68)(38 67)(39 66)(40 65)(41 52)(42 51)(43 50)(44 49)(45 56)(46 55)(47 54)(48 53)(58 64)(59 63)(60 62)
G:=sub<Sym(72)| (25,51,46)(26,47,52)(27,53,48)(28,41,54)(29,55,42)(30,43,56)(31,49,44)(32,45,50)(33,60,70)(34,71,61)(35,62,72)(36,65,63)(37,64,66)(38,67,57)(39,58,68)(40,69,59), (1,20,13)(2,21,14)(3,22,15)(4,23,16)(5,24,9)(6,17,10)(7,18,11)(8,19,12)(25,51,46)(26,52,47)(27,53,48)(28,54,41)(29,55,42)(30,56,43)(31,49,44)(32,50,45)(33,60,70)(34,61,71)(35,62,72)(36,63,65)(37,64,66)(38,57,67)(39,58,68)(40,59,69), (1,61,27)(2,28,62)(3,63,29)(4,30,64)(5,57,31)(6,32,58)(7,59,25)(8,26,60)(9,38,44)(10,45,39)(11,40,46)(12,47,33)(13,34,48)(14,41,35)(15,36,42)(16,43,37)(17,50,68)(18,69,51)(19,52,70)(20,71,53)(21,54,72)(22,65,55)(23,56,66)(24,67,49), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,8)(3,7)(4,6)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(16,17)(25,29)(26,28)(30,32)(33,72)(34,71)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65)(41,52)(42,51)(43,50)(44,49)(45,56)(46,55)(47,54)(48,53)(58,64)(59,63)(60,62)>;
G:=Group( (25,51,46)(26,47,52)(27,53,48)(28,41,54)(29,55,42)(30,43,56)(31,49,44)(32,45,50)(33,60,70)(34,71,61)(35,62,72)(36,65,63)(37,64,66)(38,67,57)(39,58,68)(40,69,59), (1,20,13)(2,21,14)(3,22,15)(4,23,16)(5,24,9)(6,17,10)(7,18,11)(8,19,12)(25,51,46)(26,52,47)(27,53,48)(28,54,41)(29,55,42)(30,56,43)(31,49,44)(32,50,45)(33,60,70)(34,61,71)(35,62,72)(36,63,65)(37,64,66)(38,57,67)(39,58,68)(40,59,69), (1,61,27)(2,28,62)(3,63,29)(4,30,64)(5,57,31)(6,32,58)(7,59,25)(8,26,60)(9,38,44)(10,45,39)(11,40,46)(12,47,33)(13,34,48)(14,41,35)(15,36,42)(16,43,37)(17,50,68)(18,69,51)(19,52,70)(20,71,53)(21,54,72)(22,65,55)(23,56,66)(24,67,49), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,8)(3,7)(4,6)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(16,17)(25,29)(26,28)(30,32)(33,72)(34,71)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65)(41,52)(42,51)(43,50)(44,49)(45,56)(46,55)(47,54)(48,53)(58,64)(59,63)(60,62) );
G=PermutationGroup([[(25,51,46),(26,47,52),(27,53,48),(28,41,54),(29,55,42),(30,43,56),(31,49,44),(32,45,50),(33,60,70),(34,71,61),(35,62,72),(36,65,63),(37,64,66),(38,67,57),(39,58,68),(40,69,59)], [(1,20,13),(2,21,14),(3,22,15),(4,23,16),(5,24,9),(6,17,10),(7,18,11),(8,19,12),(25,51,46),(26,52,47),(27,53,48),(28,54,41),(29,55,42),(30,56,43),(31,49,44),(32,50,45),(33,60,70),(34,61,71),(35,62,72),(36,63,65),(37,64,66),(38,57,67),(39,58,68),(40,59,69)], [(1,61,27),(2,28,62),(3,63,29),(4,30,64),(5,57,31),(6,32,58),(7,59,25),(8,26,60),(9,38,44),(10,45,39),(11,40,46),(12,47,33),(13,34,48),(14,41,35),(15,36,42),(16,43,37),(17,50,68),(18,69,51),(19,52,70),(20,71,53),(21,54,72),(22,65,55),(23,56,66),(24,67,49)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,8),(3,7),(4,6),(9,24),(10,23),(11,22),(12,21),(13,20),(14,19),(15,18),(16,17),(25,29),(26,28),(30,32),(33,72),(34,71),(35,70),(36,69),(37,68),(38,67),(39,66),(40,65),(41,52),(42,51),(43,50),(44,49),(45,56),(46,55),(47,54),(48,53),(58,64),(59,63),(60,62)]])
Matrix representation of He3⋊2D8 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 72 |
72 | 1 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
50 | 5 | 0 | 0 | 0 | 0 |
68 | 55 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 50 | 5 |
0 | 0 | 0 | 0 | 68 | 55 |
0 | 0 | 50 | 5 | 0 | 0 |
0 | 0 | 68 | 55 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[50,68,0,0,0,0,5,55,0,0,0,0,0,0,0,0,50,68,0,0,0,0,5,55,0,0,50,68,0,0,0,0,5,55,0,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
He3⋊2D8 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_2D_8
% in TeX
G:=Group("He3:2D8");
// GroupNames label
G:=SmallGroup(432,79);
// by ID
G=gap.SmallGroup(432,79);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,254,135,58,571,4037,537,14118,7069]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export