Extensions 1→N→G→Q→1 with N=C12⋊S3 and Q=S3

Direct product G=N×Q with N=C12⋊S3 and Q=S3
dρLabelID
S3×C12⋊S372S3xC12:S3432,671

Semidirect products G=N:Q with N=C12⋊S3 and Q=S3
extensionφ:Q→Out NdρLabelID
C12⋊S31S3 = He32D8φ: S3/C1S3 ⊆ Out C12⋊S3726+C12:S3:1S3432,79
C12⋊S32S3 = He33D8φ: S3/C1S3 ⊆ Out C12⋊S37212+C12:S3:2S3432,83
C12⋊S33S3 = C12⋊S3⋊S3φ: S3/C1S3 ⊆ Out C12⋊S37212+C12:S3:3S3432,295
C12⋊S34S3 = C12.84S32φ: S3/C1S3 ⊆ Out C12⋊S3726C12:S3:4S3432,296
C12⋊S35S3 = C3⋊S3⋊D12φ: S3/C1S3 ⊆ Out C12⋊S33612+C12:S3:5S3432,301
C12⋊S36S3 = C12.86S32φ: S3/C1S3 ⊆ Out C12⋊S3366+C12:S3:6S3432,302
C12⋊S37S3 = C338D8φ: S3/C3C2 ⊆ Out C12⋊S372C12:S3:7S3432,438
C12⋊S38S3 = C336D8φ: S3/C3C2 ⊆ Out C12⋊S3144C12:S3:8S3432,436
C12⋊S39S3 = C339D8φ: S3/C3C2 ⊆ Out C12⋊S3484C12:S3:9S3432,457
C12⋊S310S3 = C12.39S32φ: S3/C3C2 ⊆ Out C12⋊S372C12:S3:10S3432,664
C12⋊S311S3 = C12⋊S32φ: S3/C3C2 ⊆ Out C12⋊S372C12:S3:11S3432,673
C12⋊S312S3 = C12⋊S312S3φ: S3/C3C2 ⊆ Out C12⋊S3484C12:S3:12S3432,688
C12⋊S313S3 = C123S32φ: S3/C3C2 ⊆ Out C12⋊S3484C12:S3:13S3432,691
C12⋊S314S3 = C12.57S32φ: trivial image144C12:S3:14S3432,668

Non-split extensions G=N.Q with N=C12⋊S3 and Q=S3
extensionφ:Q→Out NdρLabelID
C12⋊S3.1S3 = He33SD16φ: S3/C1S3 ⊆ Out C12⋊S3726C12:S3.1S3432,78
C12⋊S3.2S3 = He35SD16φ: S3/C1S3 ⊆ Out C12⋊S37212+C12:S3.2S3432,85
C12⋊S3.3S3 = C3316SD16φ: S3/C3C2 ⊆ Out C12⋊S3144C12:S3.3S3432,443
C12⋊S3.4S3 = C3313SD16φ: S3/C3C2 ⊆ Out C12⋊S3144C12:S3.4S3432,440
C12⋊S3.5S3 = C3318SD16φ: S3/C3C2 ⊆ Out C12⋊S3484C12:S3.5S3432,458

׿
×
𝔽