Extensions 1→N→G→Q→1 with N=C3⋊S3 and Q=C2×Dic3

Direct product G=N×Q with N=C3⋊S3 and Q=C2×Dic3
dρLabelID
C2×Dic3×C3⋊S3144C2xDic3xC3:S3432,677

Semidirect products G=N:Q with N=C3⋊S3 and Q=C2×Dic3
extensionφ:Q→Out NdρLabelID
C3⋊S3⋊(C2×Dic3) = C2×C6.S32φ: C2×Dic3/C22S3 ⊆ Out C3⋊S372C3:S3:(C2xDic3)432,317
C3⋊S32(C2×Dic3) = S32×Dic3φ: C2×Dic3/Dic3C2 ⊆ Out C3⋊S3488-C3:S3:2(C2xDic3)432,594
C3⋊S33(C2×Dic3) = C2×C339(C2×C4)φ: C2×Dic3/C2×C6C2 ⊆ Out C3⋊S348C3:S3:3(C2xDic3)432,692
C3⋊S34(C2×Dic3) = C22×C33⋊C4φ: C2×Dic3/C2×C6C2 ⊆ Out C3⋊S348C3:S3:4(C2xDic3)432,766

Non-split extensions G=N.Q with N=C3⋊S3 and Q=C2×Dic3
extensionφ:Q→Out NdρLabelID
C3⋊S3.1(C2×Dic3) = C2×C3⋊F9φ: C2×Dic3/C6C4 ⊆ Out C3⋊S3488C3:S3.1(C2xDic3)432,752
C3⋊S3.2(C2×Dic3) = S32⋊Dic3φ: C2×Dic3/C6C22 ⊆ Out C3⋊S3244C3:S3.2(C2xDic3)432,580
C3⋊S3.3(C2×Dic3) = (C3×C6).9D12φ: C2×Dic3/C6C22 ⊆ Out C3⋊S3488-C3:S3.3(C2xDic3)432,587
C3⋊S3.4(C2×Dic3) = C6.2PSU3(𝔽2)φ: C2×Dic3/C6C22 ⊆ Out C3⋊S3488C3:S3.4(C2xDic3)432,593
C3⋊S3.5(C2×Dic3) = Dic3×C32⋊C4φ: C2×Dic3/Dic3C2 ⊆ Out C3⋊S3488-C3:S3.5(C2xDic3)432,567

׿
×
𝔽