Copied to
clipboard

G = C2×C3⋊F9order 432 = 24·33

Direct product of C2 and C3⋊F9

direct product, metabelian, soluble, monomial, A-group

Aliases: C2×C3⋊F9, C6⋊F9, C32(C2×F9), C333(C2×C8), (C32×C6)⋊2C8, C32⋊C4.6D6, C32⋊C4.Dic3, (C3×C6)⋊(C3⋊C8), C3⋊S32(C3⋊C8), (C3×C3⋊S3)⋊2C8, C322(C2×C3⋊C8), (C6×C3⋊S3).2C4, (C3×C32⋊C4).2C4, (C6×C32⋊C4).9C2, (C2×C32⋊C4).5S3, C3⋊S3.1(C2×Dic3), (C2×C3⋊S3).3Dic3, (C3×C32⋊C4).9C22, (C3×C3⋊S3).3(C2×C4), SmallGroup(432,752)

Series: Derived Chief Lower central Upper central

C1C33 — C2×C3⋊F9
C1C3C33C3×C3⋊S3C3×C32⋊C4C3⋊F9 — C2×C3⋊F9
C33 — C2×C3⋊F9
C1C2

Generators and relations for C2×C3⋊F9
 G = < a,b,c,d,e | a2=b3=c3=d3=e8=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=b-1, ece-1=cd=dc, ede-1=c >

Subgroups: 368 in 58 conjugacy classes, 23 normal (21 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, C2×C4, C32, C32, C12, D6, C2×C6, C2×C8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C2×C12, C33, C32⋊C4, S3×C6, C2×C3⋊S3, C2×C3⋊C8, C3×C3⋊S3, C32×C6, F9, C2×C32⋊C4, C3×C32⋊C4, C6×C3⋊S3, C2×F9, C3⋊F9, C6×C32⋊C4, C2×C3⋊F9
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, Dic3, D6, C2×C8, C3⋊C8, C2×Dic3, C2×C3⋊C8, F9, C2×F9, C3⋊F9, C2×C3⋊F9

Character table of C2×C3⋊F9

 class 12A2B2C3A3B3C3D4A4B4C4D6A6B6C6D6E6F8A8B8C8D8E8F8G8H12A12B12C12D
 size 11992888999928881818272727272727272718181818
ρ1111111111111111111111111111111    trivial
ρ2111111111111111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ31-1-111111-111-1-1-1-1-11-1-11111-1-1-11-1-11    linear of order 2
ρ41-1-111111-111-1-1-1-1-11-11-1-1-1-11111-1-11    linear of order 2
ρ511111111-1-1-1-1111111-iii-i-iii-i-1-1-1-1    linear of order 4
ρ61-1-1111111-1-11-1-1-1-11-1iii-i-i-i-ii-111-1    linear of order 4
ρ711111111-1-1-1-1111111i-i-iii-i-ii-1-1-1-1    linear of order 4
ρ81-1-1111111-1-11-1-1-1-11-1-i-i-iiiii-i-111-1    linear of order 4
ρ911-1-11111-i-iii1111-1-1ζ87ζ8ζ85ζ83ζ87ζ8ζ85ζ83i-ii-i    linear of order 8
ρ1011-1-11111ii-i-i1111-1-1ζ8ζ87ζ83ζ85ζ8ζ87ζ83ζ85-ii-ii    linear of order 8
ρ111-11-11111-ii-ii-1-1-1-1-11ζ85ζ87ζ83ζ85ζ8ζ83ζ87ζ8-i-iii    linear of order 8
ρ121-11-11111i-ii-i-1-1-1-1-11ζ83ζ8ζ85ζ83ζ87ζ85ζ8ζ87ii-i-i    linear of order 8
ρ1311-1-11111ii-i-i1111-1-1ζ85ζ83ζ87ζ8ζ85ζ83ζ87ζ8-ii-ii    linear of order 8
ρ141-11-11111i-ii-i-1-1-1-1-11ζ87ζ85ζ8ζ87ζ83ζ8ζ85ζ83ii-i-i    linear of order 8
ρ151-11-11111-ii-ii-1-1-1-1-11ζ8ζ83ζ87ζ8ζ85ζ87ζ83ζ85-i-iii    linear of order 8
ρ1611-1-11111-i-iii1111-1-1ζ83ζ85ζ8ζ87ζ83ζ85ζ8ζ87i-ii-i    linear of order 8
ρ172-2-22-1-12-1-222-211-21-1100000000-111-1    orthogonal lifted from D6
ρ182222-1-12-12222-1-12-1-1-100000000-1-1-1-1    orthogonal lifted from S3
ρ192-2-22-1-12-12-2-2211-21-11000000001-1-11    symplectic lifted from Dic3, Schur index 2
ρ202222-1-12-1-2-2-2-2-1-12-1-1-1000000001111    symplectic lifted from Dic3, Schur index 2
ρ2122-2-2-1-12-12i2i-2i-2i-1-12-11100000000i-ii-i    complex lifted from C3⋊C8
ρ2222-2-2-1-12-1-2i-2i2i2i-1-12-11100000000-ii-ii    complex lifted from C3⋊C8
ρ232-22-2-1-12-12i-2i2i-2i11-211-100000000-i-iii    complex lifted from C3⋊C8
ρ242-22-2-1-12-1-2i2i-2i2i11-211-100000000ii-i-i    complex lifted from C3⋊C8
ρ258-8008-1-1-10000-811100000000000000    orthogonal lifted from C2×F9
ρ2688008-1-1-100008-1-1-100000000000000    orthogonal lifted from F9
ρ278800-41+3-3/2-11-3-3/20000-41+3-3/2-11-3-3/200000000000000    complex lifted from C3⋊F9
ρ288-800-41-3-3/2-11+3-3/200004-1+3-3/21-1-3-3/200000000000000    complex faithful
ρ298800-41-3-3/2-11+3-3/20000-41-3-3/2-11+3-3/200000000000000    complex lifted from C3⋊F9
ρ308-800-41+3-3/2-11-3-3/200004-1-3-3/21-1+3-3/200000000000000    complex faithful

Smallest permutation representation of C2×C3⋊F9
On 48 points
Generators in S48
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 40)(16 33)(25 41)(26 42)(27 43)(28 44)(29 45)(30 46)(31 47)(32 48)
(1 46 11)(2 12 47)(3 48 13)(4 14 41)(5 42 15)(6 16 43)(7 44 9)(8 10 45)(17 28 34)(18 35 29)(19 30 36)(20 37 31)(21 32 38)(22 39 25)(23 26 40)(24 33 27)
(1 46 11)(2 12 47)(4 14 41)(5 15 42)(6 43 16)(8 45 10)(18 29 35)(19 30 36)(20 37 31)(22 39 25)(23 40 26)(24 27 33)
(1 46 11)(2 47 12)(3 13 48)(5 15 42)(6 16 43)(7 44 9)(17 28 34)(19 30 36)(20 31 37)(21 38 32)(23 40 26)(24 33 27)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,33)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48), (1,46,11)(2,12,47)(3,48,13)(4,14,41)(5,42,15)(6,16,43)(7,44,9)(8,10,45)(17,28,34)(18,35,29)(19,30,36)(20,37,31)(21,32,38)(22,39,25)(23,26,40)(24,33,27), (1,46,11)(2,12,47)(4,14,41)(5,15,42)(6,43,16)(8,45,10)(18,29,35)(19,30,36)(20,37,31)(22,39,25)(23,40,26)(24,27,33), (1,46,11)(2,47,12)(3,13,48)(5,15,42)(6,16,43)(7,44,9)(17,28,34)(19,30,36)(20,31,37)(21,38,32)(23,40,26)(24,33,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;

G:=Group( (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,33)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48), (1,46,11)(2,12,47)(3,48,13)(4,14,41)(5,42,15)(6,16,43)(7,44,9)(8,10,45)(17,28,34)(18,35,29)(19,30,36)(20,37,31)(21,32,38)(22,39,25)(23,26,40)(24,33,27), (1,46,11)(2,12,47)(4,14,41)(5,15,42)(6,43,16)(8,45,10)(18,29,35)(19,30,36)(20,37,31)(22,39,25)(23,40,26)(24,27,33), (1,46,11)(2,47,12)(3,13,48)(5,15,42)(6,16,43)(7,44,9)(17,28,34)(19,30,36)(20,31,37)(21,38,32)(23,40,26)(24,33,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,40),(16,33),(25,41),(26,42),(27,43),(28,44),(29,45),(30,46),(31,47),(32,48)], [(1,46,11),(2,12,47),(3,48,13),(4,14,41),(5,42,15),(6,16,43),(7,44,9),(8,10,45),(17,28,34),(18,35,29),(19,30,36),(20,37,31),(21,32,38),(22,39,25),(23,26,40),(24,33,27)], [(1,46,11),(2,12,47),(4,14,41),(5,15,42),(6,43,16),(8,45,10),(18,29,35),(19,30,36),(20,37,31),(22,39,25),(23,40,26),(24,27,33)], [(1,46,11),(2,47,12),(3,13,48),(5,15,42),(6,16,43),(7,44,9),(17,28,34),(19,30,36),(20,31,37),(21,38,32),(23,40,26),(24,33,27)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])

Matrix representation of C2×C3⋊F9 in GL8(𝔽73)

720000000
072000000
007200000
000720000
000072000
000007200
000000720
000000072
,
80000000
08000000
00800000
00080000
000064000
330006400
39390000640
31310000064
,
80000000
064000000
1429100000
6053010000
000064000
070008800
3900000640
042003008
,
80000000
064000000
042800000
3100640000
00001000
2724000100
0340046080
31000240064
,
27270016600
000072000
0000059072
0000013720
60140660000
00727204600
0004601400
0002701300

G:=sub<GL(8,GF(73))| [72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72],[8,0,0,0,0,3,39,31,0,8,0,0,0,3,39,31,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64],[8,0,14,60,0,0,39,0,0,64,29,53,0,70,0,42,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,64,8,0,3,0,0,0,0,0,8,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,8],[8,0,0,31,0,27,0,31,0,64,42,0,0,24,34,0,0,0,8,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,1,0,46,24,0,0,0,0,0,1,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,64],[27,0,0,0,60,0,0,0,27,0,0,0,14,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,66,72,46,27,1,72,0,0,0,0,0,0,66,0,59,13,0,46,14,13,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0] >;

C2×C3⋊F9 in GAP, Magma, Sage, TeX

C_2\times C_3\rtimes F_9
% in TeX

G:=Group("C2xC3:F9");
// GroupNames label

G:=SmallGroup(432,752);
// by ID

G=gap.SmallGroup(432,752);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,28,58,2244,718,165,677,691,530,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

Export

Character table of C2×C3⋊F9 in TeX

׿
×
𝔽