non-abelian, supersoluble, monomial
Aliases: He3⋊5SD16, C12.11S32, (C3×C12).6D6, (C3×C6).3D12, He3⋊3C8⋊3C2, C32⋊4C8⋊3S3, He3⋊4Q8⋊1C2, C12⋊S3.2S3, (C2×He3).11D4, He3⋊4D4.2C2, C4.3(C32⋊D6), C32⋊3(C24⋊C2), C2.6(He3⋊3D4), C32⋊3(D4.S3), (C4×He3).6C22, C6.31(C3⋊D12), C3.3(D12.S3), (C3×C6).6(C3⋊D4), SmallGroup(432,85)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for He3⋊5SD16
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, dbd-1=ebe=b-1, dcd-1=c-1, ce=ec, ede=d3 >
Subgroups: 527 in 82 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C32, C32, Dic3, C12, C12, D6, C2×C6, SD16, C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, Dic6, D12, C3×D4, C3×Q8, He3, C3×Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C24⋊C2, D4.S3, Q8⋊2S3, C32⋊C6, C2×He3, C3×C3⋊C8, C32⋊4C8, C3×Dic6, C3×D12, C12⋊S3, He3⋊3C4, C4×He3, C2×C32⋊C6, Dic6⋊S3, C32⋊5SD16, He3⋊3C8, He3⋊4D4, He3⋊4Q8, He3⋊5SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, D12, C3⋊D4, S32, C24⋊C2, D4.S3, C3⋊D12, C32⋊D6, D12.S3, He3⋊3D4, He3⋊5SD16
Character table of He3⋊5SD16
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 36 | 2 | 6 | 6 | 12 | 2 | 36 | 2 | 6 | 6 | 12 | 36 | 36 | 18 | 18 | 4 | 6 | 6 | 12 | 12 | 12 | 36 | 36 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | -2 | 2 | -1 | 2 | -1 | 2 | 0 | 2 | -1 | 2 | -1 | 1 | 1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 2 | 2 | -1 | 2 | -1 | 2 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | 2 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | 2 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | -2 | -2 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ9 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | -2 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | -2 | 1 | 1 | 0 | 0 | -√3 | -√3 | √3 | √3 | orthogonal lifted from D12 |
ρ11 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | -2 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | -2 | 1 | 1 | 0 | 0 | √3 | √3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ12 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ13 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ14 | 2 | 2 | 0 | 2 | -1 | 2 | -1 | -2 | 0 | 2 | -1 | 2 | -1 | √-3 | -√-3 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ15 | 2 | 2 | 0 | 2 | -1 | 2 | -1 | -2 | 0 | 2 | -1 | 2 | -1 | -√-3 | √-3 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ16 | 2 | -2 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | -√-2 | √-2 | 0 | -√3 | √3 | 0 | -√3 | √3 | 0 | 0 | -ζ83ζ3+ζ8ζ3+ζ8 | -ζ87ζ3+ζ85ζ3+ζ85 | -ζ87ζ32+ζ85ζ32+ζ85 | -ζ83ζ32+ζ8ζ32+ζ8 | complex lifted from C24⋊C2 |
ρ17 | 2 | -2 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | √-2 | -√-2 | 0 | -√3 | √3 | 0 | -√3 | √3 | 0 | 0 | -ζ87ζ3+ζ85ζ3+ζ85 | -ζ83ζ3+ζ8ζ3+ζ8 | -ζ83ζ32+ζ8ζ32+ζ8 | -ζ87ζ32+ζ85ζ32+ζ85 | complex lifted from C24⋊C2 |
ρ18 | 2 | -2 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | √-2 | -√-2 | 0 | √3 | -√3 | 0 | √3 | -√3 | 0 | 0 | -ζ87ζ32+ζ85ζ32+ζ85 | -ζ83ζ32+ζ8ζ32+ζ8 | -ζ83ζ3+ζ8ζ3+ζ8 | -ζ87ζ3+ζ85ζ3+ζ85 | complex lifted from C24⋊C2 |
ρ19 | 2 | -2 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | -√-2 | √-2 | 0 | √3 | -√3 | 0 | √3 | -√3 | 0 | 0 | -ζ83ζ32+ζ8ζ32+ζ8 | -ζ87ζ32+ζ85ζ32+ζ85 | -ζ87ζ3+ζ85ζ3+ζ85 | -ζ83ζ3+ζ8ζ3+ζ8 | complex lifted from C24⋊C2 |
ρ20 | 4 | 4 | 0 | 4 | -2 | -2 | 1 | -4 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -4 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D12 |
ρ21 | 4 | 4 | 0 | 4 | -2 | -2 | 1 | 4 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 4 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ22 | 4 | -4 | 0 | 4 | -2 | 4 | -2 | 0 | 0 | -4 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.S3, Schur index 2 |
ρ23 | 4 | -4 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | 0 | -√3 | √3 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D12.S3, Schur index 2 |
ρ24 | 4 | -4 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | 0 | √3 | -√3 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D12.S3, Schur index 2 |
ρ25 | 6 | 6 | 0 | -3 | 0 | 0 | 0 | 6 | -2 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊D6 |
ρ26 | 6 | 6 | 0 | -3 | 0 | 0 | 0 | 6 | 2 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊D6 |
ρ27 | 6 | 6 | 0 | -3 | 0 | 0 | 0 | -6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | -√-3 | √-3 | 0 | 0 | 0 | 0 | complex lifted from He3⋊3D4 |
ρ28 | 6 | 6 | 0 | -3 | 0 | 0 | 0 | -6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | √-3 | -√-3 | 0 | 0 | 0 | 0 | complex lifted from He3⋊3D4 |
ρ29 | 12 | -12 | 0 | -6 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(17 36 50)(18 37 51)(19 38 52)(20 39 53)(21 40 54)(22 33 55)(23 34 56)(24 35 49)(41 59 72)(42 60 65)(43 61 66)(44 62 67)(45 63 68)(46 64 69)(47 57 70)(48 58 71)
(1 15 31)(2 32 16)(3 9 25)(4 26 10)(5 11 27)(6 28 12)(7 13 29)(8 30 14)(17 50 36)(18 37 51)(19 52 38)(20 39 53)(21 54 40)(22 33 55)(23 56 34)(24 35 49)(41 72 59)(42 60 65)(43 66 61)(44 62 67)(45 68 63)(46 64 69)(47 70 57)(48 58 71)
(1 68 20)(2 21 69)(3 70 22)(4 23 71)(5 72 24)(6 17 65)(7 66 18)(8 19 67)(9 57 33)(10 34 58)(11 59 35)(12 36 60)(13 61 37)(14 38 62)(15 63 39)(16 40 64)(25 47 55)(26 56 48)(27 41 49)(28 50 42)(29 43 51)(30 52 44)(31 45 53)(32 54 46)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 4)(3 7)(6 8)(9 29)(10 32)(11 27)(12 30)(13 25)(14 28)(15 31)(16 26)(17 19)(18 22)(21 23)(33 51)(34 54)(35 49)(36 52)(37 55)(38 50)(39 53)(40 56)(41 59)(42 62)(43 57)(44 60)(45 63)(46 58)(47 61)(48 64)(65 67)(66 70)(69 71)
G:=sub<Sym(72)| (17,36,50)(18,37,51)(19,38,52)(20,39,53)(21,40,54)(22,33,55)(23,34,56)(24,35,49)(41,59,72)(42,60,65)(43,61,66)(44,62,67)(45,63,68)(46,64,69)(47,57,70)(48,58,71), (1,15,31)(2,32,16)(3,9,25)(4,26,10)(5,11,27)(6,28,12)(7,13,29)(8,30,14)(17,50,36)(18,37,51)(19,52,38)(20,39,53)(21,54,40)(22,33,55)(23,56,34)(24,35,49)(41,72,59)(42,60,65)(43,66,61)(44,62,67)(45,68,63)(46,64,69)(47,70,57)(48,58,71), (1,68,20)(2,21,69)(3,70,22)(4,23,71)(5,72,24)(6,17,65)(7,66,18)(8,19,67)(9,57,33)(10,34,58)(11,59,35)(12,36,60)(13,61,37)(14,38,62)(15,63,39)(16,40,64)(25,47,55)(26,56,48)(27,41,49)(28,50,42)(29,43,51)(30,52,44)(31,45,53)(32,54,46), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,29)(10,32)(11,27)(12,30)(13,25)(14,28)(15,31)(16,26)(17,19)(18,22)(21,23)(33,51)(34,54)(35,49)(36,52)(37,55)(38,50)(39,53)(40,56)(41,59)(42,62)(43,57)(44,60)(45,63)(46,58)(47,61)(48,64)(65,67)(66,70)(69,71)>;
G:=Group( (17,36,50)(18,37,51)(19,38,52)(20,39,53)(21,40,54)(22,33,55)(23,34,56)(24,35,49)(41,59,72)(42,60,65)(43,61,66)(44,62,67)(45,63,68)(46,64,69)(47,57,70)(48,58,71), (1,15,31)(2,32,16)(3,9,25)(4,26,10)(5,11,27)(6,28,12)(7,13,29)(8,30,14)(17,50,36)(18,37,51)(19,52,38)(20,39,53)(21,54,40)(22,33,55)(23,56,34)(24,35,49)(41,72,59)(42,60,65)(43,66,61)(44,62,67)(45,68,63)(46,64,69)(47,70,57)(48,58,71), (1,68,20)(2,21,69)(3,70,22)(4,23,71)(5,72,24)(6,17,65)(7,66,18)(8,19,67)(9,57,33)(10,34,58)(11,59,35)(12,36,60)(13,61,37)(14,38,62)(15,63,39)(16,40,64)(25,47,55)(26,56,48)(27,41,49)(28,50,42)(29,43,51)(30,52,44)(31,45,53)(32,54,46), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,29)(10,32)(11,27)(12,30)(13,25)(14,28)(15,31)(16,26)(17,19)(18,22)(21,23)(33,51)(34,54)(35,49)(36,52)(37,55)(38,50)(39,53)(40,56)(41,59)(42,62)(43,57)(44,60)(45,63)(46,58)(47,61)(48,64)(65,67)(66,70)(69,71) );
G=PermutationGroup([[(17,36,50),(18,37,51),(19,38,52),(20,39,53),(21,40,54),(22,33,55),(23,34,56),(24,35,49),(41,59,72),(42,60,65),(43,61,66),(44,62,67),(45,63,68),(46,64,69),(47,57,70),(48,58,71)], [(1,15,31),(2,32,16),(3,9,25),(4,26,10),(5,11,27),(6,28,12),(7,13,29),(8,30,14),(17,50,36),(18,37,51),(19,52,38),(20,39,53),(21,54,40),(22,33,55),(23,56,34),(24,35,49),(41,72,59),(42,60,65),(43,66,61),(44,62,67),(45,68,63),(46,64,69),(47,70,57),(48,58,71)], [(1,68,20),(2,21,69),(3,70,22),(4,23,71),(5,72,24),(6,17,65),(7,66,18),(8,19,67),(9,57,33),(10,34,58),(11,59,35),(12,36,60),(13,61,37),(14,38,62),(15,63,39),(16,40,64),(25,47,55),(26,56,48),(27,41,49),(28,50,42),(29,43,51),(30,52,44),(31,45,53),(32,54,46)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,4),(3,7),(6,8),(9,29),(10,32),(11,27),(12,30),(13,25),(14,28),(15,31),(16,26),(17,19),(18,22),(21,23),(33,51),(34,54),(35,49),(36,52),(37,55),(38,50),(39,53),(40,56),(41,59),(42,62),(43,57),(44,60),(45,63),(46,58),(47,61),(48,64),(65,67),(66,70),(69,71)]])
Matrix representation of He3⋊5SD16 ►in GL10(𝔽73)
72 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 | 0 | 72 | 72 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 72 | 72 | 72 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 64 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 64 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 72 | 72 | 72 | 71 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 36 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 62 | 25 | 0 | 0 | 0 | 0 | 0 | 0 |
37 | 62 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 72 | 72 | 72 | 72 | 72 | 72 |
G:=sub<GL(10,GF(73))| [72,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,72,0,0,0,0,0,0,1,0,0,72,0,0,0,0,0,0,0,72,72,0,1,0,0,0,0,0,0,1,0,72,0,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,72,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,72,72,0,0,1,0,0,0,0,0,1,0,0,0,0,72,0,0,0,0,0,0,72,72,1,0,0,0,0,0,0,0,1,0,0,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72],[8,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,0,0,0,0,0,72,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,72,0,0,0,0,0,0,0,1,0,72,0,0,0,0,0,0,0,0,72,71,1,1,0,0,0,0,0,0,1,72,0,0],[0,0,37,11,0,0,0,0,0,0,0,0,62,48,0,0,0,0,0,0,36,62,0,0,0,0,0,0,0,0,11,25,0,0,0,0,0,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,72,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,72,0,0,0,0,0,0,2,1,72,72,0,0,0,0,0,0,1,72,0,0],[1,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,72,0,0,0,0,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,72,0,0,0,0,0,0,1,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,72] >;
He3⋊5SD16 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_5{\rm SD}_{16}
% in TeX
G:=Group("He3:5SD16");
// GroupNames label
G:=SmallGroup(432,85);
// by ID
G=gap.SmallGroup(432,85);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,36,254,58,571,4037,537,14118,7069]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,d*b*d^-1=e*b*e=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^3>;
// generators/relations
Export