Extensions 1→N→G→Q→1 with N=C9×C3⋊C8 and Q=C2

Direct product G=N×Q with N=C9×C3⋊C8 and Q=C2
dρLabelID
C18×C3⋊C8144C18xC3:C8432,126

Semidirect products G=N:Q with N=C9×C3⋊C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9×C3⋊C8)⋊1C2 = C3⋊D72φ: C2/C1C2 ⊆ Out C9×C3⋊C8724+(C9xC3:C8):1C2432,64
(C9×C3⋊C8)⋊2C2 = D36.S3φ: C2/C1C2 ⊆ Out C9×C3⋊C81444-(C9xC3:C8):2C2432,62
(C9×C3⋊C8)⋊3C2 = C6.D36φ: C2/C1C2 ⊆ Out C9×C3⋊C8724+(C9xC3:C8):3C2432,63
(C9×C3⋊C8)⋊4C2 = D9×C3⋊C8φ: C2/C1C2 ⊆ Out C9×C3⋊C81444(C9xC3:C8):4C2432,58
(C9×C3⋊C8)⋊5C2 = C36.38D6φ: C2/C1C2 ⊆ Out C9×C3⋊C8724(C9xC3:C8):5C2432,59
(C9×C3⋊C8)⋊6C2 = C36.39D6φ: C2/C1C2 ⊆ Out C9×C3⋊C81444(C9xC3:C8):6C2432,60
(C9×C3⋊C8)⋊7C2 = C36.40D6φ: C2/C1C2 ⊆ Out C9×C3⋊C8724(C9xC3:C8):7C2432,61
(C9×C3⋊C8)⋊8C2 = C9×D4⋊S3φ: C2/C1C2 ⊆ Out C9×C3⋊C8724(C9xC3:C8):8C2432,150
(C9×C3⋊C8)⋊9C2 = C9×D4.S3φ: C2/C1C2 ⊆ Out C9×C3⋊C8724(C9xC3:C8):9C2432,151
(C9×C3⋊C8)⋊10C2 = C9×Q82S3φ: C2/C1C2 ⊆ Out C9×C3⋊C81444(C9xC3:C8):10C2432,158
(C9×C3⋊C8)⋊11C2 = C9×C8⋊S3φ: C2/C1C2 ⊆ Out C9×C3⋊C81442(C9xC3:C8):11C2432,110
(C9×C3⋊C8)⋊12C2 = C9×C4.Dic3φ: C2/C1C2 ⊆ Out C9×C3⋊C8722(C9xC3:C8):12C2432,127
(C9×C3⋊C8)⋊13C2 = S3×C72φ: trivial image1442(C9xC3:C8):13C2432,109

Non-split extensions G=N.Q with N=C9×C3⋊C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9×C3⋊C8).1C2 = C3⋊Dic36φ: C2/C1C2 ⊆ Out C9×C3⋊C81444-(C9xC3:C8).1C2432,65
(C9×C3⋊C8).2C2 = C9×C3⋊Q16φ: C2/C1C2 ⊆ Out C9×C3⋊C81444(C9xC3:C8).2C2432,159

׿
×
𝔽