Extensions 1→N→G→Q→1 with N=C2×C3⋊S3 and Q=Dic3

Direct product G=N×Q with N=C2×C3⋊S3 and Q=Dic3
dρLabelID
C2×Dic3×C3⋊S3144C2xDic3xC3:S3432,677

Semidirect products G=N:Q with N=C2×C3⋊S3 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3)⋊1Dic3 = C62.4D6φ: Dic3/C2S3 ⊆ Out C2×C3⋊S372(C2xC3:S3):1Dic3432,97
(C2×C3⋊S3)⋊2Dic3 = C2×C6.S32φ: Dic3/C2S3 ⊆ Out C2×C3⋊S372(C2xC3:S3):2Dic3432,317
(C2×C3⋊S3)⋊3Dic3 = C62.78D6φ: Dic3/C6C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3):3Dic3432,450
(C2×C3⋊S3)⋊4Dic3 = C62.84D6φ: Dic3/C6C2 ⊆ Out C2×C3⋊S348(C2xC3:S3):4Dic3432,461
(C2×C3⋊S3)⋊5Dic3 = C6211Dic3φ: Dic3/C6C2 ⊆ Out C2×C3⋊S3244(C2xC3:S3):5Dic3432,641
(C2×C3⋊S3)⋊6Dic3 = C2×C339(C2×C4)φ: Dic3/C6C2 ⊆ Out C2×C3⋊S348(C2xC3:S3):6Dic3432,692
(C2×C3⋊S3)⋊7Dic3 = C22×C33⋊C4φ: Dic3/C6C2 ⊆ Out C2×C3⋊S348(C2xC3:S3):7Dic3432,766

Non-split extensions G=N.Q with N=C2×C3⋊S3 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3).1Dic3 = C32⋊C6⋊C8φ: Dic3/C2S3 ⊆ Out C2×C3⋊S3726(C2xC3:S3).1Dic3432,76
(C2×C3⋊S3).2Dic3 = He3⋊M4(2)φ: Dic3/C2S3 ⊆ Out C2×C3⋊S3726(C2xC3:S3).2Dic3432,77
(C2×C3⋊S3).3Dic3 = C2×C3⋊F9φ: Dic3/C3C4 ⊆ Out C2×C3⋊S3488(C2xC3:S3).3Dic3432,752
(C2×C3⋊S3).4Dic3 = C338M4(2)φ: Dic3/C6C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3).4Dic3432,434
(C2×C3⋊S3).5Dic3 = C12.93S32φ: Dic3/C6C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).5Dic3432,455
(C2×C3⋊S3).6Dic3 = C3310M4(2)φ: Dic3/C6C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).6Dic3432,456
(C2×C3⋊S3).7Dic3 = C337(C2×C8)φ: Dic3/C6C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).7Dic3432,635
(C2×C3⋊S3).8Dic3 = C334M4(2)φ: Dic3/C6C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).8Dic3432,636
(C2×C3⋊S3).9Dic3 = C3⋊S3×C3⋊C8φ: trivial image144(C2xC3:S3).9Dic3432,431

׿
×
𝔽