d | ρ | Label | ID | ||
---|---|---|---|---|---|
C2×Dic3×C3⋊S3 | 144 | C2xDic3xC3:S3 | 432,677 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C3⋊S3)⋊1Dic3 = C62.4D6 | φ: Dic3/C2 → S3 ⊆ Out C2×C3⋊S3 | 72 | (C2xC3:S3):1Dic3 | 432,97 | |
(C2×C3⋊S3)⋊2Dic3 = C2×C6.S32 | φ: Dic3/C2 → S3 ⊆ Out C2×C3⋊S3 | 72 | (C2xC3:S3):2Dic3 | 432,317 | |
(C2×C3⋊S3)⋊3Dic3 = C62.78D6 | φ: Dic3/C6 → C2 ⊆ Out C2×C3⋊S3 | 144 | (C2xC3:S3):3Dic3 | 432,450 | |
(C2×C3⋊S3)⋊4Dic3 = C62.84D6 | φ: Dic3/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | (C2xC3:S3):4Dic3 | 432,461 | |
(C2×C3⋊S3)⋊5Dic3 = C62⋊11Dic3 | φ: Dic3/C6 → C2 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3):5Dic3 | 432,641 |
(C2×C3⋊S3)⋊6Dic3 = C2×C33⋊9(C2×C4) | φ: Dic3/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | (C2xC3:S3):6Dic3 | 432,692 | |
(C2×C3⋊S3)⋊7Dic3 = C22×C33⋊C4 | φ: Dic3/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | (C2xC3:S3):7Dic3 | 432,766 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C3⋊S3).1Dic3 = C32⋊C6⋊C8 | φ: Dic3/C2 → S3 ⊆ Out C2×C3⋊S3 | 72 | 6 | (C2xC3:S3).1Dic3 | 432,76 |
(C2×C3⋊S3).2Dic3 = He3⋊M4(2) | φ: Dic3/C2 → S3 ⊆ Out C2×C3⋊S3 | 72 | 6 | (C2xC3:S3).2Dic3 | 432,77 |
(C2×C3⋊S3).3Dic3 = C2×C3⋊F9 | φ: Dic3/C3 → C4 ⊆ Out C2×C3⋊S3 | 48 | 8 | (C2xC3:S3).3Dic3 | 432,752 |
(C2×C3⋊S3).4Dic3 = C33⋊8M4(2) | φ: Dic3/C6 → C2 ⊆ Out C2×C3⋊S3 | 144 | (C2xC3:S3).4Dic3 | 432,434 | |
(C2×C3⋊S3).5Dic3 = C12.93S32 | φ: Dic3/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).5Dic3 | 432,455 |
(C2×C3⋊S3).6Dic3 = C33⋊10M4(2) | φ: Dic3/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).6Dic3 | 432,456 |
(C2×C3⋊S3).7Dic3 = C33⋊7(C2×C8) | φ: Dic3/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).7Dic3 | 432,635 |
(C2×C3⋊S3).8Dic3 = C33⋊4M4(2) | φ: Dic3/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).8Dic3 | 432,636 |
(C2×C3⋊S3).9Dic3 = C3⋊S3×C3⋊C8 | φ: trivial image | 144 | (C2xC3:S3).9Dic3 | 432,431 |