Extensions 1→N→G→Q→1 with N=C3⋊C8 and Q=D9

Direct product G=N×Q with N=C3⋊C8 and Q=D9
dρLabelID
D9×C3⋊C81444D9xC3:C8432,58

Semidirect products G=N:Q with N=C3⋊C8 and Q=D9
extensionφ:Q→Out NdρLabelID
C3⋊C81D9 = D36.S3φ: D9/C9C2 ⊆ Out C3⋊C81444-C3:C8:1D9432,62
C3⋊C82D9 = C6.D36φ: D9/C9C2 ⊆ Out C3⋊C8724+C3:C8:2D9432,63
C3⋊C83D9 = C3⋊D72φ: D9/C9C2 ⊆ Out C3⋊C8724+C3:C8:3D9432,64
C3⋊C84D9 = C36.39D6φ: D9/C9C2 ⊆ Out C3⋊C81444C3:C8:4D9432,60
C3⋊C85D9 = C36.40D6φ: D9/C9C2 ⊆ Out C3⋊C8724C3:C8:5D9432,61
C3⋊C86D9 = C36.38D6φ: trivial image724C3:C8:6D9432,59

Non-split extensions G=N.Q with N=C3⋊C8 and Q=D9
extensionφ:Q→Out NdρLabelID
C3⋊C8.D9 = C3⋊Dic36φ: D9/C9C2 ⊆ Out C3⋊C81444-C3:C8.D9432,65

׿
×
𝔽