extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C6.D6) = C36.38D6 | φ: C6.D6/C3×Dic3 → C2 ⊆ Aut C6 | 72 | 4 | C6.1(C6.D6) | 432,59 |
C6.2(C6.D6) = C36.40D6 | φ: C6.D6/C3×Dic3 → C2 ⊆ Aut C6 | 72 | 4 | C6.2(C6.D6) | 432,61 |
C6.3(C6.D6) = Dic3×Dic9 | φ: C6.D6/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.3(C6.D6) | 432,87 |
C6.4(C6.D6) = C18.Dic6 | φ: C6.D6/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.4(C6.D6) | 432,89 |
C6.5(C6.D6) = C6.18D36 | φ: C6.D6/C3×Dic3 → C2 ⊆ Aut C6 | 72 | | C6.5(C6.D6) | 432,92 |
C6.6(C6.D6) = C2×C18.D6 | φ: C6.D6/C3×Dic3 → C2 ⊆ Aut C6 | 72 | | C6.6(C6.D6) | 432,306 |
C6.7(C6.D6) = C12.69S32 | φ: C6.D6/C3×Dic3 → C2 ⊆ Aut C6 | 72 | | C6.7(C6.D6) | 432,432 |
C6.8(C6.D6) = C33⋊9M4(2) | φ: C6.D6/C3×Dic3 → C2 ⊆ Aut C6 | 72 | | C6.8(C6.D6) | 432,435 |
C6.9(C6.D6) = Dic3×C3⋊Dic3 | φ: C6.D6/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.9(C6.D6) | 432,448 |
C6.10(C6.D6) = C62.79D6 | φ: C6.D6/C3×Dic3 → C2 ⊆ Aut C6 | 72 | | C6.10(C6.D6) | 432,451 |
C6.11(C6.D6) = C62.81D6 | φ: C6.D6/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.11(C6.D6) | 432,453 |
C6.12(C6.D6) = C12.89S32 | φ: C6.D6/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | 6 | C6.12(C6.D6) | 432,81 |
C6.13(C6.D6) = He3⋊3M4(2) | φ: C6.D6/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | 6 | C6.13(C6.D6) | 432,82 |
C6.14(C6.D6) = He3⋊C42 | φ: C6.D6/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | | C6.14(C6.D6) | 432,94 |
C6.15(C6.D6) = C62.3D6 | φ: C6.D6/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | | C6.15(C6.D6) | 432,96 |
C6.16(C6.D6) = C62.5D6 | φ: C6.D6/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.16(C6.D6) | 432,98 |
C6.17(C6.D6) = C2×He3⋊(C2×C4) | φ: C6.D6/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.17(C6.D6) | 432,321 |
C6.18(C6.D6) = C12.93S32 | φ: C6.D6/C2×C3⋊S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.18(C6.D6) | 432,455 |
C6.19(C6.D6) = C33⋊10M4(2) | φ: C6.D6/C2×C3⋊S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.19(C6.D6) | 432,456 |
C6.20(C6.D6) = C33⋊6C42 | φ: C6.D6/C2×C3⋊S3 → C2 ⊆ Aut C6 | 48 | | C6.20(C6.D6) | 432,460 |
C6.21(C6.D6) = C62.84D6 | φ: C6.D6/C2×C3⋊S3 → C2 ⊆ Aut C6 | 48 | | C6.21(C6.D6) | 432,461 |
C6.22(C6.D6) = C62.85D6 | φ: C6.D6/C2×C3⋊S3 → C2 ⊆ Aut C6 | 48 | | C6.22(C6.D6) | 432,462 |
C6.23(C6.D6) = C3×C12.29D6 | central extension (φ=1) | 48 | 4 | C6.23(C6.D6) | 432,415 |
C6.24(C6.D6) = C3×C12.31D6 | central extension (φ=1) | 48 | 4 | C6.24(C6.D6) | 432,417 |
C6.25(C6.D6) = C3×Dic32 | central extension (φ=1) | 48 | | C6.25(C6.D6) | 432,425 |
C6.26(C6.D6) = C3×C6.D12 | central extension (φ=1) | 48 | | C6.26(C6.D6) | 432,427 |
C6.27(C6.D6) = C3×C62.C22 | central extension (φ=1) | 48 | | C6.27(C6.D6) | 432,429 |