Extensions 1→N→G→Q→1 with N=C6 and Q=C6.D6

Direct product G=N×Q with N=C6 and Q=C6.D6
dρLabelID
C6×C6.D648C6xC6.D6432,654

Semidirect products G=N:Q with N=C6 and Q=C6.D6
extensionφ:Q→Aut NdρLabelID
C61(C6.D6) = C2×C338(C2×C4)φ: C6.D6/C3×Dic3C2 ⊆ Aut C672C6:1(C6.D6)432,679
C62(C6.D6) = C2×C339(C2×C4)φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C648C6:2(C6.D6)432,692

Non-split extensions G=N.Q with N=C6 and Q=C6.D6
extensionφ:Q→Aut NdρLabelID
C6.1(C6.D6) = C36.38D6φ: C6.D6/C3×Dic3C2 ⊆ Aut C6724C6.1(C6.D6)432,59
C6.2(C6.D6) = C36.40D6φ: C6.D6/C3×Dic3C2 ⊆ Aut C6724C6.2(C6.D6)432,61
C6.3(C6.D6) = Dic3×Dic9φ: C6.D6/C3×Dic3C2 ⊆ Aut C6144C6.3(C6.D6)432,87
C6.4(C6.D6) = C18.Dic6φ: C6.D6/C3×Dic3C2 ⊆ Aut C6144C6.4(C6.D6)432,89
C6.5(C6.D6) = C6.18D36φ: C6.D6/C3×Dic3C2 ⊆ Aut C672C6.5(C6.D6)432,92
C6.6(C6.D6) = C2×C18.D6φ: C6.D6/C3×Dic3C2 ⊆ Aut C672C6.6(C6.D6)432,306
C6.7(C6.D6) = C12.69S32φ: C6.D6/C3×Dic3C2 ⊆ Aut C672C6.7(C6.D6)432,432
C6.8(C6.D6) = C339M4(2)φ: C6.D6/C3×Dic3C2 ⊆ Aut C672C6.8(C6.D6)432,435
C6.9(C6.D6) = Dic3×C3⋊Dic3φ: C6.D6/C3×Dic3C2 ⊆ Aut C6144C6.9(C6.D6)432,448
C6.10(C6.D6) = C62.79D6φ: C6.D6/C3×Dic3C2 ⊆ Aut C672C6.10(C6.D6)432,451
C6.11(C6.D6) = C62.81D6φ: C6.D6/C3×Dic3C2 ⊆ Aut C6144C6.11(C6.D6)432,453
C6.12(C6.D6) = C12.89S32φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C6726C6.12(C6.D6)432,81
C6.13(C6.D6) = He33M4(2)φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C6726C6.13(C6.D6)432,82
C6.14(C6.D6) = He3⋊C42φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C6144C6.14(C6.D6)432,94
C6.15(C6.D6) = C62.3D6φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C6144C6.15(C6.D6)432,96
C6.16(C6.D6) = C62.5D6φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C672C6.16(C6.D6)432,98
C6.17(C6.D6) = C2×He3⋊(C2×C4)φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C672C6.17(C6.D6)432,321
C6.18(C6.D6) = C12.93S32φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C6484C6.18(C6.D6)432,455
C6.19(C6.D6) = C3310M4(2)φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C6484C6.19(C6.D6)432,456
C6.20(C6.D6) = C336C42φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C648C6.20(C6.D6)432,460
C6.21(C6.D6) = C62.84D6φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C648C6.21(C6.D6)432,461
C6.22(C6.D6) = C62.85D6φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C648C6.22(C6.D6)432,462
C6.23(C6.D6) = C3×C12.29D6central extension (φ=1)484C6.23(C6.D6)432,415
C6.24(C6.D6) = C3×C12.31D6central extension (φ=1)484C6.24(C6.D6)432,417
C6.25(C6.D6) = C3×Dic32central extension (φ=1)48C6.25(C6.D6)432,425
C6.26(C6.D6) = C3×C6.D12central extension (φ=1)48C6.26(C6.D6)432,427
C6.27(C6.D6) = C3×C62.C22central extension (φ=1)48C6.27(C6.D6)432,429

׿
×
𝔽