Copied to
clipboard

G = C3×C12.29D6order 432 = 24·33

Direct product of C3 and C12.29D6

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3×C12.29D6, C3⋊S33C24, C31(S3×C24), C339(C2×C8), C12.102S32, C6.1(S3×C12), C12.45(S3×C6), C326(C2×C24), C3211(S3×C8), (C3×C12).179D6, C3⋊Dic3.4C12, C6.23(C6.D6), (C32×C12).61C22, (C3×C3⋊C8)⋊6C6, C3⋊C86(C3×S3), (C3×C3⋊S3)⋊3C8, (C3×C3⋊C8)⋊13S3, C4.14(C3×S32), (C6×C3⋊S3).3C4, (C4×C3⋊S3).6C6, (C32×C3⋊C8)⋊9C2, (C12×C3⋊S3).9C2, (C2×C3⋊S3).4C12, (C3×C6).58(C4×S3), (C3×C12).62(C2×C6), (C3×C6).18(C2×C12), (C3×C3⋊Dic3).3C4, C2.1(C3×C6.D6), (C32×C6).23(C2×C4), SmallGroup(432,415)

Series: Derived Chief Lower central Upper central

C1C32 — C3×C12.29D6
C1C3C32C3×C6C3×C12C32×C12C32×C3⋊C8 — C3×C12.29D6
C32 — C3×C12.29D6
C1C12

Generators and relations for C3×C12.29D6
 G = < a,b,c,d | a3=b12=1, c6=b3, d2=b6, ab=ba, ac=ca, ad=da, cbc-1=dbd-1=b5, dcd-1=b6c5 >

Subgroups: 384 in 126 conjugacy classes, 44 normal (20 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, C2×C4, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, C2×C8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, S3×C8, C2×C24, C3×C3⋊S3, C32×C6, C3×C3⋊C8, C3×C3⋊C8, C3×C24, S3×C12, C4×C3⋊S3, C3×C3⋊Dic3, C32×C12, C6×C3⋊S3, C12.29D6, S3×C24, C32×C3⋊C8, C12×C3⋊S3, C3×C12.29D6
Quotients: C1, C2, C3, C4, C22, S3, C6, C8, C2×C4, C12, D6, C2×C6, C2×C8, C3×S3, C24, C4×S3, C2×C12, S32, S3×C6, S3×C8, C2×C24, C6.D6, S3×C12, C3×S32, C12.29D6, S3×C24, C3×C6.D6, C3×C12.29D6

Smallest permutation representation of C3×C12.29D6
On 48 points
Generators in S48
(1 17 9)(2 18 10)(3 19 11)(4 20 12)(5 21 13)(6 22 14)(7 23 15)(8 24 16)(25 33 41)(26 34 42)(27 35 43)(28 36 44)(29 37 45)(30 38 46)(31 39 47)(32 40 48)
(1 3 5 7 9 11 13 15 17 19 21 23)(2 12 22 8 18 4 14 24 10 20 6 16)(25 35 45 31 41 27 37 47 33 43 29 39)(26 28 30 32 34 36 38 40 42 44 46 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 26 13 38)(2 43 14 31)(3 36 15 48)(4 29 16 41)(5 46 17 34)(6 39 18 27)(7 32 19 44)(8 25 20 37)(9 42 21 30)(10 35 22 47)(11 28 23 40)(12 45 24 33)

G:=sub<Sym(48)| (1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,33,41)(26,34,42)(27,35,43)(28,36,44)(29,37,45)(30,38,46)(31,39,47)(32,40,48), (1,3,5,7,9,11,13,15,17,19,21,23)(2,12,22,8,18,4,14,24,10,20,6,16)(25,35,45,31,41,27,37,47,33,43,29,39)(26,28,30,32,34,36,38,40,42,44,46,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,26,13,38)(2,43,14,31)(3,36,15,48)(4,29,16,41)(5,46,17,34)(6,39,18,27)(7,32,19,44)(8,25,20,37)(9,42,21,30)(10,35,22,47)(11,28,23,40)(12,45,24,33)>;

G:=Group( (1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,33,41)(26,34,42)(27,35,43)(28,36,44)(29,37,45)(30,38,46)(31,39,47)(32,40,48), (1,3,5,7,9,11,13,15,17,19,21,23)(2,12,22,8,18,4,14,24,10,20,6,16)(25,35,45,31,41,27,37,47,33,43,29,39)(26,28,30,32,34,36,38,40,42,44,46,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,26,13,38)(2,43,14,31)(3,36,15,48)(4,29,16,41)(5,46,17,34)(6,39,18,27)(7,32,19,44)(8,25,20,37)(9,42,21,30)(10,35,22,47)(11,28,23,40)(12,45,24,33) );

G=PermutationGroup([[(1,17,9),(2,18,10),(3,19,11),(4,20,12),(5,21,13),(6,22,14),(7,23,15),(8,24,16),(25,33,41),(26,34,42),(27,35,43),(28,36,44),(29,37,45),(30,38,46),(31,39,47),(32,40,48)], [(1,3,5,7,9,11,13,15,17,19,21,23),(2,12,22,8,18,4,14,24,10,20,6,16),(25,35,45,31,41,27,37,47,33,43,29,39),(26,28,30,32,34,36,38,40,42,44,46,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,26,13,38),(2,43,14,31),(3,36,15,48),(4,29,16,41),(5,46,17,34),(6,39,18,27),(7,32,19,44),(8,25,20,37),(9,42,21,30),(10,35,22,47),(11,28,23,40),(12,45,24,33)]])

108 conjugacy classes

class 1 2A2B2C3A3B3C···3H3I3J3K4A4B4C4D6A6B6C···6H6I6J6K6L6M6N6O8A···8H12A12B12C12D12E···12P12Q···12V12W12X12Y12Z24A···24P24Q···24AN
order1222333···33334444666···666666668···81212121212···1212···121212121224···2424···24
size1199112···24441199112···244499993···311112···24···499993···36···6

108 irreducible representations

dim11111111111122222222444444
type+++++++
imageC1C2C2C3C4C4C6C6C8C12C12C24S3D6C3×S3C4×S3S3×C6S3×C8S3×C12S3×C24S32C6.D6C3×S32C12.29D6C3×C6.D6C3×C12.29D6
kernelC3×C12.29D6C32×C3⋊C8C12×C3⋊S3C12.29D6C3×C3⋊Dic3C6×C3⋊S3C3×C3⋊C8C4×C3⋊S3C3×C3⋊S3C3⋊Dic3C2×C3⋊S3C3⋊S3C3×C3⋊C8C3×C12C3⋊C8C3×C6C12C32C6C3C12C6C4C3C2C1
# reps1212224284416224448816112224

Matrix representation of C3×C12.29D6 in GL4(𝔽73) generated by

8000
0800
0010
0001
,
1000
0100
002746
00270
,
72100
72000
00022
00220
,
72000
72100
00046
00460
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,27,27,0,0,46,0],[72,72,0,0,1,0,0,0,0,0,0,22,0,0,22,0],[72,72,0,0,0,1,0,0,0,0,0,46,0,0,46,0] >;

C3×C12.29D6 in GAP, Magma, Sage, TeX

C_3\times C_{12}._{29}D_6
% in TeX

G:=Group("C3xC12.29D6");
// GroupNames label

G:=SmallGroup(432,415);
// by ID

G=gap.SmallGroup(432,415);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,84,92,80,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^12=1,c^6=b^3,d^2=b^6,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^5,d*c*d^-1=b^6*c^5>;
// generators/relations

׿
×
𝔽