direct product, metabelian, supersoluble, monomial
Aliases: C3×C12.31D6, C33⋊6M4(2), C12.104S32, C6.2(S3×C12), C12.47(S3×C6), (C3×C12).181D6, C3⋊Dic3.5C12, C32⋊5(C3×M4(2)), C32⋊10(C8⋊S3), C6.24(C6.D6), (C32×C12).63C22, (C3×C3⋊C8)⋊8C6, C3⋊C8⋊5(C3×S3), (C3×C3⋊C8)⋊12S3, C4.16(C3×S32), C3⋊1(C3×C8⋊S3), (C4×C3⋊S3).7C6, (C6×C3⋊S3).4C4, (C2×C3⋊S3).5C12, (C32×C3⋊C8)⋊15C2, (C3×C6).59(C4×S3), (C12×C3⋊S3).16C2, (C3×C12).64(C2×C6), (C3×C6).20(C2×C12), C2.3(C3×C6.D6), (C3×C3⋊Dic3).11C4, (C32×C6).25(C2×C4), SmallGroup(432,417)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C12.31D6
G = < a,b,c,d | a3=b12=d2=1, c6=b3, ab=ba, ac=ca, ad=da, cbc-1=dbd=b5, dcd=c5 >
Subgroups: 384 in 118 conjugacy classes, 40 normal (20 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, C2×C4, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, M4(2), C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C8⋊S3, C3×M4(2), C3×C3⋊S3, C32×C6, C3×C3⋊C8, C3×C3⋊C8, C3×C24, S3×C12, C4×C3⋊S3, C3×C3⋊Dic3, C32×C12, C6×C3⋊S3, C12.31D6, C3×C8⋊S3, C32×C3⋊C8, C12×C3⋊S3, C3×C12.31D6
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, C12, D6, C2×C6, M4(2), C3×S3, C4×S3, C2×C12, S32, S3×C6, C8⋊S3, C3×M4(2), C6.D6, S3×C12, C3×S32, C12.31D6, C3×C8⋊S3, C3×C6.D6, C3×C12.31D6
(1 9 17)(2 10 18)(3 11 19)(4 12 20)(5 13 21)(6 14 22)(7 15 23)(8 16 24)(25 41 33)(26 42 34)(27 43 35)(28 44 36)(29 45 37)(30 46 38)(31 47 39)(32 48 40)
(1 11 21 7 17 3 13 23 9 19 5 15)(2 4 6 8 10 12 14 16 18 20 22 24)(25 35 45 31 41 27 37 47 33 43 29 39)(26 28 30 32 34 36 38 40 42 44 46 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 39)(2 44)(3 25)(4 30)(5 35)(6 40)(7 45)(8 26)(9 31)(10 36)(11 41)(12 46)(13 27)(14 32)(15 37)(16 42)(17 47)(18 28)(19 33)(20 38)(21 43)(22 48)(23 29)(24 34)
G:=sub<Sym(48)| (1,9,17)(2,10,18)(3,11,19)(4,12,20)(5,13,21)(6,14,22)(7,15,23)(8,16,24)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (1,11,21,7,17,3,13,23,9,19,5,15)(2,4,6,8,10,12,14,16,18,20,22,24)(25,35,45,31,41,27,37,47,33,43,29,39)(26,28,30,32,34,36,38,40,42,44,46,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,39)(2,44)(3,25)(4,30)(5,35)(6,40)(7,45)(8,26)(9,31)(10,36)(11,41)(12,46)(13,27)(14,32)(15,37)(16,42)(17,47)(18,28)(19,33)(20,38)(21,43)(22,48)(23,29)(24,34)>;
G:=Group( (1,9,17)(2,10,18)(3,11,19)(4,12,20)(5,13,21)(6,14,22)(7,15,23)(8,16,24)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (1,11,21,7,17,3,13,23,9,19,5,15)(2,4,6,8,10,12,14,16,18,20,22,24)(25,35,45,31,41,27,37,47,33,43,29,39)(26,28,30,32,34,36,38,40,42,44,46,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,39)(2,44)(3,25)(4,30)(5,35)(6,40)(7,45)(8,26)(9,31)(10,36)(11,41)(12,46)(13,27)(14,32)(15,37)(16,42)(17,47)(18,28)(19,33)(20,38)(21,43)(22,48)(23,29)(24,34) );
G=PermutationGroup([[(1,9,17),(2,10,18),(3,11,19),(4,12,20),(5,13,21),(6,14,22),(7,15,23),(8,16,24),(25,41,33),(26,42,34),(27,43,35),(28,44,36),(29,45,37),(30,46,38),(31,47,39),(32,48,40)], [(1,11,21,7,17,3,13,23,9,19,5,15),(2,4,6,8,10,12,14,16,18,20,22,24),(25,35,45,31,41,27,37,47,33,43,29,39),(26,28,30,32,34,36,38,40,42,44,46,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,39),(2,44),(3,25),(4,30),(5,35),(6,40),(7,45),(8,26),(9,31),(10,36),(11,41),(12,46),(13,27),(14,32),(15,37),(16,42),(17,47),(18,28),(19,33),(20,38),(21,43),(22,48),(23,29),(24,34)]])
90 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 3C | ··· | 3H | 3I | 3J | 3K | 4A | 4B | 4C | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 6K | 6L | 6M | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | ··· | 12P | 12Q | ··· | 12V | 12W | 12X | 24A | ··· | 24AF |
order | 1 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 18 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 1 | 1 | 18 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 18 | 18 | 6 | 6 | 6 | 6 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 18 | 18 | 6 | ··· | 6 |
90 irreducible representations
Matrix representation of C3×C12.31D6 ►in GL6(𝔽73)
8 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 64 | 0 | 0 | 0 |
0 | 0 | 0 | 64 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
27 | 0 | 0 | 0 | 0 | 0 |
0 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
32 | 36 | 0 | 0 | 0 | 0 |
23 | 41 | 0 | 0 | 0 | 0 |
0 | 0 | 46 | 27 | 0 | 0 |
0 | 0 | 0 | 27 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
37 | 12 | 0 | 0 | 0 | 0 |
32 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
G:=sub<GL(6,GF(73))| [8,0,0,0,0,0,0,8,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[27,0,0,0,0,0,0,27,0,0,0,0,0,0,0,72,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[32,23,0,0,0,0,36,41,0,0,0,0,0,0,46,0,0,0,0,0,27,27,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[37,32,0,0,0,0,12,36,0,0,0,0,0,0,72,0,0,0,0,0,1,1,0,0,0,0,0,0,72,72,0,0,0,0,0,1] >;
C3×C12.31D6 in GAP, Magma, Sage, TeX
C_3\times C_{12}._{31}D_6
% in TeX
G:=Group("C3xC12.31D6");
// GroupNames label
G:=SmallGroup(432,417);
// by ID
G=gap.SmallGroup(432,417);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,84,365,92,80,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^12=d^2=1,c^6=b^3,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^5,d*c*d=c^5>;
// generators/relations