extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×C3⋊S3)⋊1S3 = C12⋊S3⋊S3 | φ: S3/C1 → S3 ⊆ Out C4×C3⋊S3 | 72 | 12+ | (C4xC3:S3):1S3 | 432,295 |
(C4×C3⋊S3)⋊2S3 = C12.S32 | φ: S3/C1 → S3 ⊆ Out C4×C3⋊S3 | 72 | 12- | (C4xC3:S3):2S3 | 432,299 |
(C4×C3⋊S3)⋊3S3 = C3⋊S3⋊D12 | φ: S3/C1 → S3 ⊆ Out C4×C3⋊S3 | 36 | 12+ | (C4xC3:S3):3S3 | 432,301 |
(C4×C3⋊S3)⋊4S3 = C12.91S32 | φ: S3/C1 → S3 ⊆ Out C4×C3⋊S3 | 72 | 6 | (C4xC3:S3):4S3 | 432,297 |
(C4×C3⋊S3)⋊5S3 = C4×C32⋊D6 | φ: S3/C1 → S3 ⊆ Out C4×C3⋊S3 | 36 | 6 | (C4xC3:S3):5S3 | 432,300 |
(C4×C3⋊S3)⋊6S3 = (C3×D12)⋊S3 | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3):6S3 | 432,661 |
(C4×C3⋊S3)⋊7S3 = C12.40S32 | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 72 | | (C4xC3:S3):7S3 | 432,665 |
(C4×C3⋊S3)⋊8S3 = C3⋊S3×D12 | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 72 | | (C4xC3:S3):8S3 | 432,672 |
(C4×C3⋊S3)⋊9S3 = C12⋊S3⋊12S3 | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3):9S3 | 432,688 |
(C4×C3⋊S3)⋊10S3 = C12⋊3S32 | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3):10S3 | 432,691 |
(C4×C3⋊S3)⋊11S3 = C12.73S32 | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 72 | | (C4xC3:S3):11S3 | 432,667 |
(C4×C3⋊S3)⋊12S3 = C12.95S32 | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3):12S3 | 432,689 |
(C4×C3⋊S3)⋊13S3 = C4×C32⋊4D6 | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3):13S3 | 432,690 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×C3⋊S3).1S3 = C3⋊S3⋊Dic6 | φ: S3/C1 → S3 ⊆ Out C4×C3⋊S3 | 72 | 12- | (C4xC3:S3).1S3 | 432,294 |
(C4×C3⋊S3).2S3 = C32⋊C6⋊C8 | φ: S3/C1 → S3 ⊆ Out C4×C3⋊S3 | 72 | 6 | (C4xC3:S3).2S3 | 432,76 |
(C4×C3⋊S3).3S3 = He3⋊M4(2) | φ: S3/C1 → S3 ⊆ Out C4×C3⋊S3 | 72 | 6 | (C4xC3:S3).3S3 | 432,77 |
(C4×C3⋊S3).4S3 = C3⋊S3×Dic6 | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).4S3 | 432,663 |
(C4×C3⋊S3).5S3 = C3⋊S3⋊4Dic6 | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).5S3 | 432,687 |
(C4×C3⋊S3).6S3 = C33⋊8M4(2) | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).6S3 | 432,434 |
(C4×C3⋊S3).7S3 = C12.93S32 | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).7S3 | 432,455 |
(C4×C3⋊S3).8S3 = C33⋊10M4(2) | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).8S3 | 432,456 |
(C4×C3⋊S3).9S3 = C33⋊7(C2×C8) | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).9S3 | 432,635 |
(C4×C3⋊S3).10S3 = C33⋊4M4(2) | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).10S3 | 432,636 |
(C4×C3⋊S3).11S3 = C4×C33⋊C4 | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).11S3 | 432,637 |
(C4×C3⋊S3).12S3 = C33⋊9(C4⋊C4) | φ: S3/C3 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).12S3 | 432,638 |
(C4×C3⋊S3).13S3 = C3⋊S3×C3⋊C8 | φ: trivial image | 144 | | (C4xC3:S3).13S3 | 432,431 |