non-abelian, supersoluble, monomial
Aliases: He3⋊3D8, C32⋊D24, C12.9S32, (C3×C6).1D12, (C3×C12).4D6, C12⋊S3⋊2S3, He3⋊3C8⋊1C2, He3⋊4D4⋊2C2, He3⋊5D4⋊1C2, C32⋊4C8⋊1S3, (C2×He3).9D4, C32⋊2(D4⋊S3), C4.1(C32⋊D6), C3.3(C3⋊D24), C2.4(He3⋊3D4), (C4×He3).4C22, C6.29(C3⋊D12), (C3×C6).4(C3⋊D4), SmallGroup(432,83)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for He3⋊3D8
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d-1 >
Subgroups: 699 in 93 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, C32, C32, C12, C12, D6, C2×C6, D8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, D12, C3×D4, He3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, D24, D4⋊S3, C32⋊C6, He3⋊C2, C2×He3, C3×C3⋊C8, C32⋊4C8, C3×D12, C12⋊S3, C4×He3, C2×C32⋊C6, C2×He3⋊C2, C32⋊2D8, C3⋊D24, He3⋊3C8, He3⋊4D4, He3⋊5D4, He3⋊3D8
Quotients: C1, C2, C22, S3, D4, D6, D8, D12, C3⋊D4, S32, D24, D4⋊S3, C3⋊D12, C32⋊D6, C3⋊D24, He3⋊3D4, He3⋊3D8
Character table of He3⋊3D8
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 36 | 36 | 2 | 6 | 6 | 12 | 2 | 2 | 6 | 6 | 12 | 36 | 36 | 36 | 36 | 18 | 18 | 4 | 6 | 6 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -1 | -1 | -1 | 2 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 0 | -2 | 2 | -1 | 2 | -1 | 2 | 2 | -1 | 2 | -1 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ7 | 2 | 2 | 0 | 2 | 2 | -1 | 2 | -1 | 2 | 2 | -1 | 2 | -1 | 0 | -1 | 0 | -1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | -2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | -2 | 1 | √3 | √3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ11 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | -2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | -2 | 1 | -√3 | -√3 | √3 | √3 | orthogonal lifted from D12 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -1 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | √2 | -√2 | 0 | -√3 | √3 | -√3 | 0 | √3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ32+ζ85ζ32+ζ85 | orthogonal lifted from D24 |
ρ15 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -1 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | -√2 | √2 | 0 | -√3 | √3 | -√3 | 0 | √3 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ3+ζ87+ζ85ζ3 | orthogonal lifted from D24 |
ρ16 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -1 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | √2 | -√2 | 0 | √3 | -√3 | √3 | 0 | -√3 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ32+ζ83+ζ8ζ32 | orthogonal lifted from D24 |
ρ17 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -1 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | -√2 | √2 | 0 | √3 | -√3 | √3 | 0 | -√3 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ3+ζ8ζ3+ζ8 | orthogonal lifted from D24 |
ρ18 | 2 | 2 | 0 | 0 | 2 | -1 | 2 | -1 | -2 | 2 | -1 | 2 | -1 | 0 | -√-3 | 0 | √-3 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ19 | 2 | 2 | 0 | 0 | 2 | -1 | 2 | -1 | -2 | 2 | -1 | 2 | -1 | 0 | √-3 | 0 | -√-3 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ20 | 4 | 4 | 0 | 0 | 4 | -2 | -2 | 1 | 4 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | -2 | -2 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ21 | 4 | -4 | 0 | 0 | 4 | -2 | 4 | -2 | 0 | -4 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊S3, Schur index 2 |
ρ22 | 4 | 4 | 0 | 0 | 4 | -2 | -2 | 1 | -4 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 2 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D12 |
ρ23 | 4 | -4 | 0 | 0 | 4 | -2 | -2 | 1 | 0 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | √3 | 0 | -√3 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D24 |
ρ24 | 4 | -4 | 0 | 0 | 4 | -2 | -2 | 1 | 0 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | -√3 | 0 | √3 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D24 |
ρ25 | 6 | 6 | -2 | 0 | -3 | 0 | 0 | 0 | 6 | -3 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊D6 |
ρ26 | 6 | 6 | 2 | 0 | -3 | 0 | 0 | 0 | 6 | -3 | 0 | 0 | 0 | -1 | 0 | -1 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊D6 |
ρ27 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | -6 | -3 | 0 | 0 | 0 | -√-3 | 0 | √-3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊3D4 |
ρ28 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | -6 | -3 | 0 | 0 | 0 | √-3 | 0 | -√-3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊3D4 |
ρ29 | 12 | -12 | 0 | 0 | -6 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful, Schur index 2 |
(1 25 47)(2 26 48)(3 27 41)(4 28 42)(5 29 43)(6 30 44)(7 31 45)(8 32 46)(9 33 51)(10 34 52)(11 35 53)(12 36 54)(13 37 55)(14 38 56)(15 39 49)(16 40 50)(17 68 57)(18 69 58)(19 70 59)(20 71 60)(21 72 61)(22 65 62)(23 66 63)(24 67 64)
(1 40 18)(2 19 33)(3 34 20)(4 21 35)(5 36 22)(6 23 37)(7 38 24)(8 17 39)(9 48 59)(10 60 41)(11 42 61)(12 62 43)(13 44 63)(14 64 45)(15 46 57)(16 58 47)(25 50 69)(26 70 51)(27 52 71)(28 72 53)(29 54 65)(30 66 55)(31 56 67)(32 68 49)
(1 16 50)(2 51 9)(3 10 52)(4 53 11)(5 12 54)(6 55 13)(7 14 56)(8 49 15)(17 32 46)(18 47 25)(19 26 48)(20 41 27)(21 28 42)(22 43 29)(23 30 44)(24 45 31)(33 70 59)(34 60 71)(35 72 61)(36 62 65)(37 66 63)(38 64 67)(39 68 57)(40 58 69)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(1 7)(2 6)(3 5)(9 55)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 56)(18 24)(19 23)(20 22)(25 45)(26 44)(27 43)(28 42)(29 41)(30 48)(31 47)(32 46)(33 37)(34 36)(38 40)(57 68)(58 67)(59 66)(60 65)(61 72)(62 71)(63 70)(64 69)
G:=sub<Sym(72)| (1,25,47)(2,26,48)(3,27,41)(4,28,42)(5,29,43)(6,30,44)(7,31,45)(8,32,46)(9,33,51)(10,34,52)(11,35,53)(12,36,54)(13,37,55)(14,38,56)(15,39,49)(16,40,50)(17,68,57)(18,69,58)(19,70,59)(20,71,60)(21,72,61)(22,65,62)(23,66,63)(24,67,64), (1,40,18)(2,19,33)(3,34,20)(4,21,35)(5,36,22)(6,23,37)(7,38,24)(8,17,39)(9,48,59)(10,60,41)(11,42,61)(12,62,43)(13,44,63)(14,64,45)(15,46,57)(16,58,47)(25,50,69)(26,70,51)(27,52,71)(28,72,53)(29,54,65)(30,66,55)(31,56,67)(32,68,49), (1,16,50)(2,51,9)(3,10,52)(4,53,11)(5,12,54)(6,55,13)(7,14,56)(8,49,15)(17,32,46)(18,47,25)(19,26,48)(20,41,27)(21,28,42)(22,43,29)(23,30,44)(24,45,31)(33,70,59)(34,60,71)(35,72,61)(36,62,65)(37,66,63)(38,64,67)(39,68,57)(40,58,69), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,7)(2,6)(3,5)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,56)(18,24)(19,23)(20,22)(25,45)(26,44)(27,43)(28,42)(29,41)(30,48)(31,47)(32,46)(33,37)(34,36)(38,40)(57,68)(58,67)(59,66)(60,65)(61,72)(62,71)(63,70)(64,69)>;
G:=Group( (1,25,47)(2,26,48)(3,27,41)(4,28,42)(5,29,43)(6,30,44)(7,31,45)(8,32,46)(9,33,51)(10,34,52)(11,35,53)(12,36,54)(13,37,55)(14,38,56)(15,39,49)(16,40,50)(17,68,57)(18,69,58)(19,70,59)(20,71,60)(21,72,61)(22,65,62)(23,66,63)(24,67,64), (1,40,18)(2,19,33)(3,34,20)(4,21,35)(5,36,22)(6,23,37)(7,38,24)(8,17,39)(9,48,59)(10,60,41)(11,42,61)(12,62,43)(13,44,63)(14,64,45)(15,46,57)(16,58,47)(25,50,69)(26,70,51)(27,52,71)(28,72,53)(29,54,65)(30,66,55)(31,56,67)(32,68,49), (1,16,50)(2,51,9)(3,10,52)(4,53,11)(5,12,54)(6,55,13)(7,14,56)(8,49,15)(17,32,46)(18,47,25)(19,26,48)(20,41,27)(21,28,42)(22,43,29)(23,30,44)(24,45,31)(33,70,59)(34,60,71)(35,72,61)(36,62,65)(37,66,63)(38,64,67)(39,68,57)(40,58,69), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,7)(2,6)(3,5)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,56)(18,24)(19,23)(20,22)(25,45)(26,44)(27,43)(28,42)(29,41)(30,48)(31,47)(32,46)(33,37)(34,36)(38,40)(57,68)(58,67)(59,66)(60,65)(61,72)(62,71)(63,70)(64,69) );
G=PermutationGroup([[(1,25,47),(2,26,48),(3,27,41),(4,28,42),(5,29,43),(6,30,44),(7,31,45),(8,32,46),(9,33,51),(10,34,52),(11,35,53),(12,36,54),(13,37,55),(14,38,56),(15,39,49),(16,40,50),(17,68,57),(18,69,58),(19,70,59),(20,71,60),(21,72,61),(22,65,62),(23,66,63),(24,67,64)], [(1,40,18),(2,19,33),(3,34,20),(4,21,35),(5,36,22),(6,23,37),(7,38,24),(8,17,39),(9,48,59),(10,60,41),(11,42,61),(12,62,43),(13,44,63),(14,64,45),(15,46,57),(16,58,47),(25,50,69),(26,70,51),(27,52,71),(28,72,53),(29,54,65),(30,66,55),(31,56,67),(32,68,49)], [(1,16,50),(2,51,9),(3,10,52),(4,53,11),(5,12,54),(6,55,13),(7,14,56),(8,49,15),(17,32,46),(18,47,25),(19,26,48),(20,41,27),(21,28,42),(22,43,29),(23,30,44),(24,45,31),(33,70,59),(34,60,71),(35,72,61),(36,62,65),(37,66,63),(38,64,67),(39,68,57),(40,58,69)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(1,7),(2,6),(3,5),(9,55),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,56),(18,24),(19,23),(20,22),(25,45),(26,44),(27,43),(28,42),(29,41),(30,48),(31,47),(32,46),(33,37),(34,36),(38,40),(57,68),(58,67),(59,66),(60,65),(61,72),(62,71),(63,70),(64,69)]])
Matrix representation of He3⋊3D8 ►in GL10(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 |
72 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
57 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 16 | 57 | 57 | 0 | 0 | 0 | 0 | 0 | 0 |
57 | 0 | 57 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 16 | 16 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 69 | 14 | 59 | 55 | 59 | 55 |
0 | 0 | 0 | 0 | 18 | 4 | 69 | 14 | 69 | 14 |
0 | 0 | 0 | 0 | 59 | 55 | 69 | 14 | 59 | 55 |
0 | 0 | 0 | 0 | 69 | 14 | 18 | 4 | 69 | 14 |
0 | 0 | 0 | 0 | 59 | 55 | 59 | 55 | 69 | 14 |
0 | 0 | 0 | 0 | 69 | 14 | 69 | 14 | 18 | 4 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
G:=sub<GL(10,GF(73))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72],[72,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,72,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0],[57,16,57,16,0,0,0,0,0,0,0,16,0,16,0,0,0,0,0,0,16,57,57,16,0,0,0,0,0,0,0,57,0,16,0,0,0,0,0,0,0,0,0,0,69,18,59,69,59,69,0,0,0,0,14,4,55,14,55,14,0,0,0,0,59,69,69,18,59,69,0,0,0,0,55,14,14,4,55,14,0,0,0,0,59,69,59,69,69,18,0,0,0,0,55,14,55,14,14,4],[0,0,72,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0] >;
He3⋊3D8 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_3D_8
% in TeX
G:=Group("He3:3D8");
// GroupNames label
G:=SmallGroup(432,83);
// by ID
G=gap.SmallGroup(432,83);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,92,254,58,571,4037,537,14118,7069]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations
Export