extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(S3xC3:S3) = C33:8D8 | φ: S3xC3:S3/S3xC32 → C2 ⊆ Aut C4 | 72 | | C4.1(S3xC3:S3) | 432,438 |
C4.2(S3xC3:S3) = C33:16SD16 | φ: S3xC3:S3/S3xC32 → C2 ⊆ Aut C4 | 144 | | C4.2(S3xC3:S3) | 432,443 |
C4.3(S3xC3:S3) = C33:17SD16 | φ: S3xC3:S3/S3xC32 → C2 ⊆ Aut C4 | 72 | | C4.3(S3xC3:S3) | 432,444 |
C4.4(S3xC3:S3) = C33:8Q16 | φ: S3xC3:S3/S3xC32 → C2 ⊆ Aut C4 | 144 | | C4.4(S3xC3:S3) | 432,447 |
C4.5(S3xC3:S3) = S3xC32:4Q8 | φ: S3xC3:S3/S3xC32 → C2 ⊆ Aut C4 | 144 | | C4.5(S3xC3:S3) | 432,660 |
C4.6(S3xC3:S3) = C12.57S32 | φ: S3xC3:S3/S3xC32 → C2 ⊆ Aut C4 | 144 | | C4.6(S3xC3:S3) | 432,668 |
C4.7(S3xC3:S3) = C12.58S32 | φ: S3xC3:S3/S3xC32 → C2 ⊆ Aut C4 | 72 | | C4.7(S3xC3:S3) | 432,669 |
C4.8(S3xC3:S3) = C33:7D8 | φ: S3xC3:S3/C3xC3:S3 → C2 ⊆ Aut C4 | 72 | | C4.8(S3xC3:S3) | 432,437 |
C4.9(S3xC3:S3) = C33:14SD16 | φ: S3xC3:S3/C3xC3:S3 → C2 ⊆ Aut C4 | 144 | | C4.9(S3xC3:S3) | 432,441 |
C4.10(S3xC3:S3) = C33:15SD16 | φ: S3xC3:S3/C3xC3:S3 → C2 ⊆ Aut C4 | 72 | | C4.10(S3xC3:S3) | 432,442 |
C4.11(S3xC3:S3) = C33:7Q16 | φ: S3xC3:S3/C3xC3:S3 → C2 ⊆ Aut C4 | 144 | | C4.11(S3xC3:S3) | 432,446 |
C4.12(S3xC3:S3) = (C3xD12):S3 | φ: S3xC3:S3/C3xC3:S3 → C2 ⊆ Aut C4 | 144 | | C4.12(S3xC3:S3) | 432,661 |
C4.13(S3xC3:S3) = C3:S3xDic6 | φ: S3xC3:S3/C3xC3:S3 → C2 ⊆ Aut C4 | 144 | | C4.13(S3xC3:S3) | 432,663 |
C4.14(S3xC3:S3) = C12.40S32 | φ: S3xC3:S3/C3xC3:S3 → C2 ⊆ Aut C4 | 72 | | C4.14(S3xC3:S3) | 432,665 |
C4.15(S3xC3:S3) = C33:6D8 | φ: S3xC3:S3/C33:C2 → C2 ⊆ Aut C4 | 144 | | C4.15(S3xC3:S3) | 432,436 |
C4.16(S3xC3:S3) = C33:12SD16 | φ: S3xC3:S3/C33:C2 → C2 ⊆ Aut C4 | 144 | | C4.16(S3xC3:S3) | 432,439 |
C4.17(S3xC3:S3) = C33:13SD16 | φ: S3xC3:S3/C33:C2 → C2 ⊆ Aut C4 | 144 | | C4.17(S3xC3:S3) | 432,440 |
C4.18(S3xC3:S3) = C33:6Q16 | φ: S3xC3:S3/C33:C2 → C2 ⊆ Aut C4 | 144 | | C4.18(S3xC3:S3) | 432,445 |
C4.19(S3xC3:S3) = D12:(C3:S3) | φ: S3xC3:S3/C33:C2 → C2 ⊆ Aut C4 | 72 | | C4.19(S3xC3:S3) | 432,662 |
C4.20(S3xC3:S3) = C12.39S32 | φ: S3xC3:S3/C33:C2 → C2 ⊆ Aut C4 | 72 | | C4.20(S3xC3:S3) | 432,664 |
C4.21(S3xC3:S3) = C32:9(S3xQ8) | φ: S3xC3:S3/C33:C2 → C2 ⊆ Aut C4 | 72 | | C4.21(S3xC3:S3) | 432,666 |
C4.22(S3xC3:S3) = S3xC32:4C8 | central extension (φ=1) | 144 | | C4.22(S3xC3:S3) | 432,430 |
C4.23(S3xC3:S3) = C3:S3xC3:C8 | central extension (φ=1) | 144 | | C4.23(S3xC3:S3) | 432,431 |
C4.24(S3xC3:S3) = C12.69S32 | central extension (φ=1) | 72 | | C4.24(S3xC3:S3) | 432,432 |
C4.25(S3xC3:S3) = C33:7M4(2) | central extension (φ=1) | 144 | | C4.25(S3xC3:S3) | 432,433 |
C4.26(S3xC3:S3) = C33:8M4(2) | central extension (φ=1) | 144 | | C4.26(S3xC3:S3) | 432,434 |
C4.27(S3xC3:S3) = C33:9M4(2) | central extension (φ=1) | 72 | | C4.27(S3xC3:S3) | 432,435 |
C4.28(S3xC3:S3) = C12.73S32 | central extension (φ=1) | 72 | | C4.28(S3xC3:S3) | 432,667 |