Extensions 1→N→G→Q→1 with N=C3×Dic18 and Q=C2

Direct product G=N×Q with N=C3×Dic18 and Q=C2
dρLabelID
C6×Dic18144C6xDic18432,340

Semidirect products G=N:Q with N=C3×Dic18 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic18)⋊1C2 = C6.D36φ: C2/C1C2 ⊆ Out C3×Dic18724+(C3xDic18):1C2432,63
(C3×Dic18)⋊2C2 = C3×C72⋊C2φ: C2/C1C2 ⊆ Out C3×Dic181442(C3xDic18):2C2432,107
(C3×Dic18)⋊3C2 = S3×Dic18φ: C2/C1C2 ⊆ Out C3×Dic181444-(C3xDic18):3C2432,284
(C3×Dic18)⋊4C2 = Dic9.D6φ: C2/C1C2 ⊆ Out C3×Dic18724+(C3xDic18):4C2432,289
(C3×Dic18)⋊5C2 = D12.D9φ: C2/C1C2 ⊆ Out C3×Dic181444(C3xDic18):5C2432,70
(C3×Dic18)⋊6C2 = C3×D4.D9φ: C2/C1C2 ⊆ Out C3×Dic18724(C3xDic18):6C2432,148
(C3×Dic18)⋊7C2 = Dic18⋊S3φ: C2/C1C2 ⊆ Out C3×Dic18724(C3xDic18):7C2432,283
(C3×Dic18)⋊8C2 = D12⋊D9φ: C2/C1C2 ⊆ Out C3×Dic18724(C3xDic18):8C2432,286
(C3×Dic18)⋊9C2 = C3×D42D9φ: C2/C1C2 ⊆ Out C3×Dic18724(C3xDic18):9C2432,357
(C3×Dic18)⋊10C2 = C3×Q8×D9φ: C2/C1C2 ⊆ Out C3×Dic181444(C3xDic18):10C2432,364
(C3×Dic18)⋊11C2 = C3×D365C2φ: trivial image722(C3xDic18):11C2432,344

Non-split extensions G=N.Q with N=C3×Dic18 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic18).1C2 = C3⋊Dic36φ: C2/C1C2 ⊆ Out C3×Dic181444-(C3xDic18).1C2432,65
(C3×Dic18).2C2 = C3×Dic36φ: C2/C1C2 ⊆ Out C3×Dic181442(C3xDic18).2C2432,104
(C3×Dic18).3C2 = C12.D18φ: C2/C1C2 ⊆ Out C3×Dic181444(C3xDic18).3C2432,74
(C3×Dic18).4C2 = C3×C9⋊Q16φ: C2/C1C2 ⊆ Out C3×Dic181444(C3xDic18).4C2432,156

׿
×
𝔽