Extensions 1→N→G→Q→1 with N=Dic18 and Q=S3

Direct product G=N×Q with N=Dic18 and Q=S3
dρLabelID
S3×Dic181444-S3xDic18432,284

Semidirect products G=N:Q with N=Dic18 and Q=S3
extensionφ:Q→Out NdρLabelID
Dic181S3 = C6.D36φ: S3/C3C2 ⊆ Out Dic18724+Dic18:1S3432,63
Dic182S3 = D12.D9φ: S3/C3C2 ⊆ Out Dic181444Dic18:2S3432,70
Dic183S3 = Dic18⋊S3φ: S3/C3C2 ⊆ Out Dic18724Dic18:3S3432,283
Dic184S3 = D12⋊D9φ: S3/C3C2 ⊆ Out Dic18724Dic18:4S3432,286
Dic185S3 = Dic9.D6φ: trivial image724+Dic18:5S3432,289

Non-split extensions G=N.Q with N=Dic18 and Q=S3
extensionφ:Q→Out NdρLabelID
Dic18.1S3 = C3⋊Dic36φ: S3/C3C2 ⊆ Out Dic181444-Dic18.1S3432,65
Dic18.2S3 = C12.D18φ: S3/C3C2 ⊆ Out Dic181444Dic18.2S3432,74

׿
×
𝔽