Extensions 1→N→G→Q→1 with N=C3 and Q=C2×D6⋊S3

Direct product G=N×Q with N=C3 and Q=C2×D6⋊S3
dρLabelID
C6×D6⋊S348C6xD6:S3432,655

Semidirect products G=N:Q with N=C3 and Q=C2×D6⋊S3
extensionφ:Q→Aut NdρLabelID
C31(C2×D6⋊S3) = S3×D6⋊S3φ: C2×D6⋊S3/D6⋊S3C2 ⊆ Aut C3488-C3:1(C2xD6:S3)432,597
C32(C2×D6⋊S3) = C2×C339D4φ: C2×D6⋊S3/C2×C3⋊Dic3C2 ⊆ Aut C348C3:2(C2xD6:S3)432,694
C33(C2×D6⋊S3) = C2×C336D4φ: C2×D6⋊S3/S3×C2×C6C2 ⊆ Aut C3144C3:3(C2xD6:S3)432,680

Non-split extensions G=N.Q with N=C3 and Q=C2×D6⋊S3
extensionφ:Q→Aut NdρLabelID
C3.1(C2×D6⋊S3) = C2×He32D4φ: C2×D6⋊S3/C2×C3⋊Dic3C2 ⊆ Aut C372C3.1(C2xD6:S3)432,320
C3.2(C2×D6⋊S3) = C2×D6⋊D9φ: C2×D6⋊S3/S3×C2×C6C2 ⊆ Aut C3144C3.2(C2xD6:S3)432,311

׿
×
𝔽