Extensions 1→N→G→Q→1 with N=C3 and Q=D12.S3

Direct product G=N×Q with N=C3 and Q=D12.S3
dρLabelID
C3×D12.S3484C3xD12.S3432,421

Semidirect products G=N:Q with N=C3 and Q=D12.S3
extensionφ:Q→Aut NdρLabelID
C31(D12.S3) = C3316SD16φ: D12.S3/C3×C3⋊C8C2 ⊆ Aut C3144C3:1(D12.S3)432,443
C32(D12.S3) = C3314SD16φ: D12.S3/C3×D12C2 ⊆ Aut C3144C3:2(D12.S3)432,441
C33(D12.S3) = C3318SD16φ: D12.S3/C324Q8C2 ⊆ Aut C3484C3:3(D12.S3)432,458

Non-split extensions G=N.Q with N=C3 and Q=D12.S3
extensionφ:Q→Aut NdρLabelID
C3.1(D12.S3) = D36.S3φ: D12.S3/C3×C3⋊C8C2 ⊆ Aut C31444-C3.1(D12.S3)432,62
C3.2(D12.S3) = C36.D6φ: D12.S3/C3×D12C2 ⊆ Aut C31444-C3.2(D12.S3)432,71
C3.3(D12.S3) = He35SD16φ: D12.S3/C324Q8C2 ⊆ Aut C37212+C3.3(D12.S3)432,85

׿
×
𝔽