Extensions 1→N→G→Q→1 with N=D4×3- 1+2 and Q=C2

Direct product G=N×Q with N=D4×3- 1+2 and Q=C2
dρLabelID
C2×D4×3- 1+272C2xD4xES-(3,1)432,405

Semidirect products G=N:Q with N=D4×3- 1+2 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×3- 1+2)⋊1C2 = D36⋊C6φ: C2/C1C2 ⊆ Out D4×3- 1+27212+(D4xES-(3,1)):1C2432,155
(D4×3- 1+2)⋊2C2 = D4×C9⋊C6φ: C2/C1C2 ⊆ Out D4×3- 1+23612+(D4xES-(3,1)):2C2432,362
(D4×3- 1+2)⋊3C2 = Dic182C6φ: C2/C1C2 ⊆ Out D4×3- 1+27212-(D4xES-(3,1)):3C2432,363
(D4×3- 1+2)⋊4C2 = D8×3- 1+2φ: C2/C1C2 ⊆ Out D4×3- 1+2726(D4xES-(3,1)):4C2432,217
(D4×3- 1+2)⋊5C2 = C4○D4×3- 1+2φ: trivial image726(D4xES-(3,1)):5C2432,411

Non-split extensions G=N.Q with N=D4×3- 1+2 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×3- 1+2).1C2 = Dic18⋊C6φ: C2/C1C2 ⊆ Out D4×3- 1+27212-(D4xES-(3,1)).1C2432,154
(D4×3- 1+2).2C2 = SD16×3- 1+2φ: C2/C1C2 ⊆ Out D4×3- 1+2726(D4xES-(3,1)).2C2432,220

׿
×
𝔽