Extensions 1→N→G→Q→1 with N=C9×Dic3 and Q=C4

Direct product G=N×Q with N=C9×Dic3 and Q=C4
dρLabelID
Dic3×C36144Dic3xC36432,131

Semidirect products G=N:Q with N=C9×Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C9×Dic3)⋊1C4 = Dic3⋊Dic9φ: C4/C2C2 ⊆ Out C9×Dic3144(C9xDic3):1C4432,90
(C9×Dic3)⋊2C4 = Dic3×Dic9φ: C4/C2C2 ⊆ Out C9×Dic3144(C9xDic3):2C4432,87
(C9×Dic3)⋊3C4 = C9×Dic3⋊C4φ: C4/C2C2 ⊆ Out C9×Dic3144(C9xDic3):3C4432,132

Non-split extensions G=N.Q with N=C9×Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C9×Dic3).1C4 = D6.Dic9φ: C4/C2C2 ⊆ Out C9×Dic31444(C9xDic3).1C4432,67
(C9×Dic3).2C4 = S3×C9⋊C8φ: C4/C2C2 ⊆ Out C9×Dic31444(C9xDic3).2C4432,66
(C9×Dic3).3C4 = C9×C8⋊S3φ: C4/C2C2 ⊆ Out C9×Dic31442(C9xDic3).3C4432,110
(C9×Dic3).4C4 = S3×C72φ: trivial image1442(C9xDic3).4C4432,109

׿
×
𝔽